
ROS BASEDWASTE SEGREGATOR
AN INTERNSHIP REPORT

Submitted by

TRUSHANT PRAFULBHAI ADESHARA
180050131001

In partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING
in

Computer Science and Engineering

Babaria Institute of Technology, Vadodara

Gujarat Technological University, Ahmedabad

April, 2022

Babaria Institute of Technology and Science
Vernama, Vadodara, Gujarat

CERTIFICATE

This is to certify that the internship report submitted along with the project entitled ROS

based Waste Segregator has been carried out by Trushant Prafulbhai Adeshara under

my guidance in partial fulfillment for the degree of Bachelor of Engineering in Computer

Science and Engineering, 8th Semester of Gujarat Technological University, Ahmedabad

during the academic year 2021-22.

__________________ _________________

Dr. Avani R. Vasant Dr. Avani R. Vasant

Internal Guide Head of the Department

Babaria Institute of Technology and Science
Vernama, Vadodara, Gujarat

DECLARATION

We hereby declare that the Internship report submitted along with the Project entitled

ROS Based Waste Segregator submitted in partial fulfillment for the degree of Bachelor

of Engineering in Computer Science and Engineering to Gujarat Technological

University, Ahmedabad, is a bonafide record of original project work carried out by me at

Wastefull Insights under the supervision of Dr. Avani R. Vasant and that no part of this

report has been directly copied from any students’ reports or taken from any other source,

without providing due reference.

Name of the Student Sign of Student

________________________ __________

Acknowledgement

First I would like to thank Ms. Manali Agarwal, Co-Founder, of Wastefull Insights for

giving me the opportunity to take up an internship within the organization.

I wish to express my sincere gratitude to my external guide Mr. Rishabh Agarwal,

Co-Founder, of Wastefull Insights for continuously guiding me at the company and

helping me through all my doubts.

I also would like to thank all the people that worked along with me at Wastefull Insights.

With their patience and openness they created an enjoyable working environment. It is

indeed with a great sense of pleasure and immense sense of gratitude that I acknowledge

the help of these individuals.

I am highly indebted to my internal guide and HOD Dr. Avani R. Vasant for helping me

through my internship by giving me the necessary suggestions and advice along with her

valuable coordination in completing this internship.

I am extremely grateful to my department, staff members, family and friends who helped

me in successful completion of this internship.

Trushant Adeshara

180050131001

Gujarat Technological University i Babaria Institute of Technology

Abstract

Internships are considered to be windows into the real world for university students as

they provide hands-on experience in a given field. With the boom in the robotics and AI

industry it becomes very essential to understand the market, client and practical

use-cases of skills learned at the university.

At Wastefull Insights, students from across India can experience what it is like to be part

of the movement “Zero Waste World'' with the help of robotics and AI. My project

emphasized on optimization of pick and place waste segregation robots. With the increase

in population, more and more plastic waste is generated every day. It is not practically

feasible or environmentally viable to place this waste in landfills. Hence, recycling and

upcycling are the only solutions. With the increased throughput of the system, more waste

can be segregated in less amount of time, leading to lower installation and maintenance

cost of the recycling company with improved performance of the robot.

During my internship period I restructured underlying ROS architecture to make it more

flexible, modular and robust. Also, developed an Operator’s UI with which one can

control both robot and camera detection. In addition to these tasks, I developed a velocity

estimation algorithm to increase overall throughput of the robot.

While developing optimization algorithms for pick and place sequence selection, I gained

exposure on how to study research papers, extract different approaches from them and

implement the one which is the best suited solution. I got in-depth insights on not only

theoretical development of algorithms but also programming them in the most efficient

manner with constrained resources.

In conclusion, this was an opportunity to develop and enhance skills and competencies in

my career field which I actually achieved.

Gujarat Technological University ii Babaria Institute of Technology

List of Figures

Fig 1.1 Organization Chart …………………………………………………………

Fig 2.1 Per Capita Plastic Waste Generation ……………………………………….

Fig 2.2 Per Capita State/UT Wise Plastic Waste Generation ……………………….

Fig 2.3 Gantt Chart (Jan 2022) ……………………………………………………..

Fig 2.4 Gantt Chart (Feb 2022) …………………………………………………….

Fig 2.5 Gantt Chart (Mar 2022) ……………………………………………………

Fig 2.6 Kanban Board ………………………………………………………………

Fig 3.1 ROS1 and ROS2 Architecture ……………………………………………..

Fig 3.2 ROS Publisher Subscriber Mechanism …………………………………….

Fig 3.3 ROS Service Mechanism …………………………………………………..

Fig 3.4 ROS Action Mechanism ……………………………………………………

Fig 3.5 ROS CvBridge Mechanism …………………………………………………

Fig 3.6 ROS Bridge Architecture ……………………………………………………

Fig 3.7 ROS Serial Architecture …………………………………………………….

Fig 3.8 CUDA Architecture …………………………………………………………

Fig 3.9 Jetson Nano and Jetson NX SBC ……………………………………………

Fig 3.10 TM4C1294 Microcontroller by TI …………………………………………..

Fig 3.11 Energia IDE Interface ……………………………………………………….

Fig 3.12 Cross Compiler ……………………………………………………………...

Fig 3.13 ArUco Marker Of Different Dictionary Type ……………………………….

Fig 3.14 Pose Estimation With ArUco Marker ……………………………………….

Fig 4.1 PnP Time Profile ……………………………………………………………

Fig 4.2 OPTSEQ Algorithm ………………………………………………………...

Fig 4.3 OPTSEQDP Algorithm ……………………………………………………..

Fig 4.4 SUBOPTDP Algorithm …………………………………………………….

Fig 4.5 Comparison Of Different PnP Algorithms …………………………………

Fig 5.1 Initial System Design ………………………………………………………

Fig 5.2 Restructured System Design ………………………………………………

Fig 5.3 System Design Flowchart …………………………………………………

Fig 5.4 Initial State Transition Diagram …………………………………………..

Fig 5.5 Optimized State Transition Diagram ……………………………………..

Fig 5.6 Operator’s UI Design …………………………………………………….

Gujarat Technological University iii Babaria Institute of Technology

Fig 6.1 Jetson Nano Home Interface After Boot ………………………………

Fig 6.2 CMAKE GUI Console …………………………………………………….

Fig 6.3 ROS Melodic Logo ………………………………………………………..

Fig 6.4 Pylon SDK Console ……………………………………………………….

Fig 6.5 Pylon IP Configuration Tool ………………………………………………

Fig 6.6 ROS Talker And Listener Node …………………………………………...

Fig 6.7 Pub Sub Computational Graph in rqt_graph ………………………………

Fig 6.8 ROS Service For Adding Two Integers ……………………………………

Fig 6.9 ROS Core Execution ………………………………………………………

Fig 6.10 ROS Fibonacci Action Server …………………………………………….

Fig 6.11 ROS Fibonacci Action Client …………………………………………….

Fig 6.12 ROS Fibonacci Action Server Feedback …………………………………

Fig 6.13 ROS TurtleSim And ROS Core ………………………………………….

Fig 6.14 ROS Teleop ………………………………………………………………

Fig 6.15 Differential Drive Robot (RVIZ) …………………………………………

Fig 6.16 Differential Drive Robot (Gazebo Environment) ………………………..

Fig 6.17 Apt Source List for Jetson ……………………………………………….

Fig 6.18 Workspace Structure For ROS …………………………………………..

Fig 6.19 Package Structure For ROS ……………………………………………..

Fig 6.20 Setup.py File …………………………………………………………….

Fig 6.21 Check Installation Of GCC And Cross Compiler ………………………

Fig 6.22 Bash Script For Tiva Setup ……………………………………………..

Fig 6.23 Tivac ROS Publisher …………………………………………………...

Fig 6.24 Camera Calibration Procedure …………………………………………

Fig 6.25 ArUco Marker Generation Script ………………………………………

Fig 6.26 ArUco Marker Detection Script Directory ……………………………..

Fig 6.27 ArUco Marker Pose Estimation ………………………………………..

Fig 6.28 Conveyor Velocity Estimation With ArUco Marker …………………..

Fig 6.29 Operator’s UI ………………………………………………………….

Gujarat Technological University iv Babaria Institute of Technology

List of Tables

Table 4.1 Comparison Between Different Pick And Place Algorithms…………………

Gujarat Technological University v Babaria Institute of Technology

List of Abbreviations

3D 3 Dimensional

ADC Analog to Digital Converter

AI Artificial Intelligence

AMR Autonomous Mobile Robot

API Application Programming Interface

ARM Advanced RISC Machine

ArUco Augmented Reality University of Cordoba

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network Library

DB Data Base

DDS Data Distribution Service

DNS Domain Name System

EOL End Of Life

FIFO First In First Out

FPU Floating Point Unit

GNU GNU’s not Unix

GPIO General Purpose Input / Output

GPU Graphics Processing Unit

HTML Hyper Text Markup Language

IDE Integrated Development Environment

I/O Input / Output

IP Internet Protocol

JS JavaScript

Gujarat Technological University vi Babaria Institute of Technology

JSON JavaScript Object Notation

LiDAR Light Detection and Ranging

MATLAB Matrix Laboratory

ML Machine Learning

MSP Mixed Signal Microcontroller

OpenCV Open Source Computer Vision Library

OPTSEQ Optimal Sequence

OPTSEQDP Optimal Sequence Dynamic Programming

PnP Pick n Place

PPA Personal Package Archive

RISC Reduced Instruction Set Computer

ROI Region Of Interest

ROS Robot Operating System

RT Real Time

RVIZ ROS Visualization

SBC Single Board Computer

SCARA Selective Compliance Assembly Robot Arm

SDK Software Development Kit

SPT Shortest Processing Time

TCP Transmission Control Protocol

TI Texas Instruments

TF Transform Frame

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

UI User Interface

Gujarat Technological University vii Babaria Institute of Technology

USB Universal Serial Bus

UT Union Territory

UUID Universally Unique Identifier

VCS Version Control System

XML eXtensible Markup Language

Gujarat Technological University viii Babaria Institute of Technology

Table of Contents

Acknowledgement …………………………………………………………..i

Abstract ……………………………………………………………………..ii

List of Figures ……………………………………………………………...iii

List of Tables ………………………………………………………………..v

List of Abbreviations ……………………………………………………….vi

Table of Contents …………………………………………………………...ix

Chapter 1 Overview of Company …………………………………….…...1

1.1 Introduction ……………………………………………..………1

1.2 History……………………………………………………...……1

1.3 Scope of Work……………………………………………...……1

1.4 Organization Chart……………………………………………....2

Chapter 2 Introduction to Internship and Internship Management……3

2.1 Internship Summary …………………………………………….3

2.2 Purpose ………………………………………………………….4

2.3 Objective ………………………………………………………..4

2.4 Scope ……………………………………………………………5

2.5 Internship Planning ……………………………………………...5

2.5.1 Internship Development Approach and Justification …..5

2.5.2 Internship Effort and Time ………………………….….7

2.5.3 Roles and Responsibilities ………………………….….8

2.5.4 Group Dependencies …………………………….……..8

2.6 Internship Scheduling ………………………………………..….8

Chapter 3 Technology Stack and Hardware Platform …………………10

3.1 Programming Languages ………………………………………10

3.1.1 C Language …………………………..……………….10

3.1.2 C++ Language …………………………………...……10

3.1.3 Python ……………………………………………...…10

Gujarat Technological University ix Babaria Institute of Technology

3.1.4 Javascript ……………………………………………...11

3.2 Robotics Software Development Framework (ROS) ………….11

3.2.1 ROS Architecture ……………………………………..12

3.2.2 ROS Filesystem Level ………………………………...13

3.2.3 ROS Computation Graph Level ………………………14

3.2.4 ROS Publisher Subscriber Mechanism ……………….15

3.2.5 ROS Service Mechanism ……………………………..16

3.2.6 ROS Action Mechanism ……………………………...16

3.2.7 ROS CvBridge ………………………………………..17

3.2.8 ROS Bridge ………………………………………...…18

3.2.9 ROS Library JS ……………………………………….19

3.2.10 ROS Serial Library ……………………………………19

3.3 Build System and Build Tool ………………………………….20

3.3.1 Build System …………………………………………...20

3.3.2 Build Tool ………………………………………………21

3.4 Git Version Control System ……………………………………21

3.5 CUDA Architecture ……………………………………………22

3.6 NumPy Library ………………………………………………...23

3.7 Python UUIDs Library ………………………………………...23

3.8 OpenCV Library ……………………………………………….23

3.9 Machine Learning ……………………………………………...24

3.10 Kalman Filters …………………………………………………24

3.11 Edge Computing Device (SBC) ……………………………….24

3.12 Embedded Board ………………………………………………26

3.13 Energia IDE ……………………………………………………26

3.14 Cross Compiler ………………………………………………...27

3.15 ArUCo Marker ……………………………………………...…28

Chapter 4 System Analysis ………………………………………………30

4.1 Study of Current System ……………………………………..…30

Gujarat Technological University x Babaria Institute of Technology

4.2 Problem and Weaknesses of Current System …………………..……..30

4.3 Requirements of New System ……………………………..…...31

4.4 Features of New System ……………………………………..…33

4.5 Literature Review of Optimization Algorithms ………………...33

4.5.1 Exhaustive Search Method …………………………….34

4.5.2 Local Augmentation Method …………………………..35

4.5.3 Experimental Results by Researcher …………………..36

4.6 Selection of OptimizationApproaches and Justification………...37

Chapter 5 System Design…………………………………………………39

5.1 System Design and Methodology……………………………….39

5.2 Input / Output and Interface Design …………………………….42

5.2.1 State Transition Diagram……………………………….42

5.2.2 Operator’s UI Interface Design………………………....43

Chapter 6 Implementation……………………………………………..…44

6.1 Implementation Platform and Environment Setup.………….…44

6.1.1 Jetson SBC Setup…………………………………….…44

6.1.2 OpenCV 3 Installation ……………………………….…45

6.1.3 ROS Melodic Installation ………………………………46

6.1.4 Pylon SDK Installation and Setup ……………………...46

6.2 ROS Basics Examples …………………………………………48

6.2.1 ROS Publisher Subscriber ……………………………...48

6.2.2 ROS Service ……………………………………………49

6.2.3 ROS Action …………………………………………….50

6.2.4 ROS TurtleSim …………………………………………52

6.2.5 ROS RVIZ AMR……………………………………….53

6.2.6 ROS Gazebo AMR……………………………………..53

6.3 Updating apt-source list ………………………………………..54

6.4 ROS Workspace and Package Configuration ………………….55

6.5 TM4C1294 Integration with ROS Serial ……………………....57

Gujarat Technological University xi Babaria Institute of Technology

6.5.1 TivaWare SDK and Cross Compiler Setup …………….57

6.5.2 Automation Script for Tiva Setup ……………………...58

6.5.3 TM4C1294 Setup and Test ………………………….….58

6.6 Conveyor Velocity Estimation with ArUco Marker ……….…..59

6.6.1 Camera Calibration …………………………………….59

6.6.2 ArUco Marker Generation and Detection ……………...60

6.6.3 Conveyor Velocity Estimation …………………………62

6.7 Operator’s UI Integration with ROS …………………………..62

6.8 Modified ROS Software Architecture …………………………64

Chapter 7 Testing………………………………………………………….65

7.1 Testing Plan ……………………………………………………..65

7.2 Test Result and Analysis………………………………………...65

7.2.1 Test Cases……………………………………………….65

Chapter 8 Conclusion and Discussion……………………………………67

8.1 Result and Analysis of Project Viabilities ………………………67

8.2 Workflow Problems Encountered and Possible Solutions………67

8.3 Summary / Conclusion of Internship ……………………………68

8.4 Limitation and Future Enhancement ……………………………69

References …………………………………………………………………70

Gujarat Technological University xii Babaria Institute of Technology

Project ID - 208496 Overview of the Company

Chapter 1

Overview of the Company

1.1 Introduction

Wastefull Insights is a deep tech startup based out of Vadodara focusing on

developing AI driven solutions for waste segregation. It focuses on a simple

vision to make a zero waste world. It has an accompanying e-commerce Platform

“Achhe Dinn” which is India’s first Platform to encourage recycled, upcycled and

sustainable products. Its main objectives include promoting Source Segregation,

Circular Economy and automating Dry Waste Segregation in the country.

1.2 History

Wastefull Insights was founded by two Co-Founders Ms. Manali Agarwal and Mr.

Rishabh Shah in the year 2020. It began with AI driven waste segregation solution

and later on an e-commerce platform “Achhe Dinn” which is India’s first platform

to encourage recycled, upcycled and sustainable products emerged.

1.3 Scope of Work

All the segments from AI to Robotics but not limited to it are under scope of

Wastefull Insights as long as they are aiming to zero waste world.The current

product being delivered is a conveyor based pick and place waste segregator

which uses AI for waste segregation. The robotic automation system comes with

hardware and associated software which can be used out of box with no or

minimum modification according to client’s requirement.

Gujarat Technological University 1 Babaria Institute of Technology

Project ID - 208496 Overview of the Company

1.4 Organization Chart

Organization chart of the company is as shown in Fig 1.1

Fig 1.1 Organization Chart

Gujarat Technological University 2 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

Chapter 2

Introduction to Internship and Internship Management

2.1 Internship Summary

I always knew that plastic waste management is an issue but never really

understood the gravity of the situation until joining Wastefull Insights. In an effort

to assess the magnitude of plastic waste being generated, I came across some

statistics as shown in Fig 2.1 and 2.2.

Fig 2.1 Per Capita Plastic Waste Generation

“Courtesy of (Central Pollution Control Board 2021)”

Fig 2.2 Per Capita State/UT Wise Plastic Waste Generation

“Courtesy of (Central Pollution Control Board 2021)”

This convinced me about the severity of the problem of plastic waste and the

necessity of finding a solution before it's too late. Automation is the only way out.

Gujarat Technological University 3 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

With the help of AI and robotics it is now possible to recycle waste by

segregation. This will help in sustaining life on planet earth. I joined Wastefull

Insights to contribute to this cause.

Developing a pick and place optimization algorithm to improve throughput of the

system was my primary goal. But considering the startup environment where one

is not bound to a specific task or role, I was assigned tasks from different

domains. Entire robot works on the ROS framework and I had to ROSify already

existing functionality including integrating the embedded system.

For optimization I worked on restructuring software architecture of the robot in

ROS and also customized computer vision software. One of the minor tasks was

to integrate the UI interface with ROS for receiving live system updates and

controlling the operator of the robot.

2.2 Purpose

To optimize performance of pick and place waste segregation robots so that

maximum segregation can be ensured in least amount of time.

2.3 Objective

Internships are considered to be windows into the real world for university

students as they provide hands-on experience in a given field. With the boom in

the robotics and AI industry it becomes very essential to understand the market,

client and practical use-cases of skills learned in university.

At Wastefull Insights, students from across India can experience what it is like to

be part of the movement “Zero Waste World'' with the help of robotics and AI.

Hence, this internship enables students to broaden their horizons and look forward

to pursuing a career in the field of robotics and AI.

Gujarat Technological University 4 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

2.4 Scope

Considering Wastefull Insights is a startup there were limitless opportunities to

learn and grow, not only in the area for which one is interning but in the overall

development of the product. As aforesaid, considering the startup environment all

the decisions were made as a group and the team was always open for suggestions

and criticism for improving performance of the robot.

Apart from designing software architecture of pick and place optimization, I was

able to learn object detection with machine learning using computer vision,

embedded system integration with ROS and Front-end UI integration with ROS.

2.5 Internship Planning

2.5.1 Internship Development Approach and Justification

As Wastefull Insights is a startup, tasks to be accomplished are dynamic in

nature and depending on the current requirement major tasks went in the

background and were resumed once foreground tasks were providing

satisfactory results with passing all the test cases.

Though the marked period for the internship which is recorded in this

report is for 12 weeks. My tenure as an intern at Wastefull Insights sums

up after 21 weeks. Tasks below are overviews for those 12 weeks.

Fig 2.3 Gantt Chart (Jan 2022)

Gujarat Technological University 5 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

Major task of the first month, that is January, was to understand the code

base of the company. Wastefull Insights has been working on the

development of a waste segregator robot for about 2 years now and in that

time there has been rapid development in the software architecture of the

system. Considering the density of the code base, emphasis would be to go

through the flow of the system and understand existing software

architecture for the robot.

Fig 2.4 Gantt Chart (Feb 2022)

In the month of February after understanding the existing system, my next

task was to test different optimization algorithms and implement them into

the existing system while simultaneously studying its pros and cons from

one which is already implemented. One of the major considerations is the

number of picks that the robot can perform and avoid sub-optimally due to

local maxima problem. Also, there were some minor tasks to accomplish

this month which included integration of the embedded system with ROS

serial instead of relying on pure UART communication. This will help in

providing more flexibility and control on the robot.

Another task which was a bit impromptu was maker based velocity

estimation of the conveyor belt. In the vision based system frame rate of

camera and conveyor speed are two important parameters which

Gujarat Technological University 6 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

drastically impact the performance of the robot. Hence, I had to tie up all

the loose ends and make the system as closed loop as possible.

Fig 2.5 Gantt Chart (Mar 2022)

Month of March was about implementation of scheduler algorithms and

revamping entire software architecture to make it more flexible and

modular. While this was being carried out, I also worked on integrating

operator’s UI frontend with ROS backend.

2.5.2 Internship Effort and Time

Duration for the internship was about 8-10 hours per day. It would start

around 9.30 a.m. and some days might even go till 8.00 p.m. Sundays were

off unless some important tasks were pending from the previous week. I

was averaging near to 60 hours per week.

Initially the workload was less while I was understanding the system, but

later on I had to push myself to explore different options for the same task

because the robot was implemented in a resource constrained system

which gave me exposure to real-world situations.

Gujarat Technological University 7 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

2.5.3 Roles and Responsibilities

My major role throughout the internship was as a Robotics Engineering

Intern in which I not only had the opportunity to explore the software side

of robots, but other areas like Machine Learning, Embedded Systems and a

little bit of Web Development. Basically any kind of integration that is

supposed to be done with ROS would come under my responsibilities.

2.5.4 Group Dependencies

I was working with people from different parts of the world and as I was

integrating modules from different sub-systems, my task was group

dependent. For ML related tasks I was working with another intern from

Kolkata and for Embedded System I was working with a Full Time

Developer. In all those tasks I was continuously guided by Mr. Rishabh

Shah and we would have brainstorming sessions on how to optimize the

system.

2.6 Internship Scheduling

At the start of every week on Monday we would have a sync up meeting in which

everyone would explain what they did last week and what their tasks are for the

next week. So, at the start of the day there was a general idea about what will be

the major task of the day. Now the next task was to break it down into smaller

sub-tasks and generate tickets for them on Github Kanban board. Fig 2.6 is a

snapshot of one such instance of Kanban Board.

Gujarat Technological University 8 Babaria Institute of Technology

Project ID - 208496 Introduction to Internship
and Internship Management

Fig 2.6 Kanban Board

Initially the tasks were in “To do”, from there they headed on to “In progress”.

Once completed they would go into “Review” from where Mr. Rishabh Shah

would look into it and provide suggestions and necessary modification. At the end

that ticket would go to “Done”.

Gujarat Technological University 9 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Chapter 3

Technology Stack and Hardware Platform

3.1 Programming Languages

3.1.1 C Language

C is a powerful general-purpose programming language. It can be used to

develop software like operating systems, databases, compilers, and so on.

One of the major uses for C is to develop firmware for embedded systems

(Programiz, n.d.).

ROS framework is entirely built on C in the backend with a library called

rcl. It is very essential to have knowledge of C to understand the working

of ROS.

3.1.2 C++

C++ is a cross-platform language that can be used to create

high-performance applications. It is an extension to the C language. C++

gives programmers a high level of control over system resources and

memory. Additionally, C++ is an object-oriented programming language

which gives a clear structure to programs and allows code to be reused,

lowering development costs (“C++ Introduction”, n.d.).

When developing in ROS C++ provides roscpp API with an abstraction to

implement Publishers, Subscribers, Services and Actions which are basic

building blocks of ROS based systems. It also allows optimizing AI

algorithms and increasing their performance by using GPU.

3.1.3 Python

Python is a high-level, general-purpose programming language that is

interpreted. The use of considerable indentation in its design philosophy

emphasizes code readability. Its language elements and object-oriented

Gujarat Technological University 10 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

approach are aimed at assisting programmers in writing clear, logical code

for both small and large-scale projects (van Rossum, n.d.).

Python is garbage-collected and dynamically typed. It supports a variety of

programming paradigms, including structured (especially procedural)

programming, object-oriented programming, and functional programming.

Because of its extensive standard library, it is often referred to as a

“batteries included” language.

One of the major advantages of using python is that it is supported in ROS

with rospy API which makes implementation of nodes in ROS really

simple and with python development time for robotics software reduces

drastically. Also, implementing AI models is much easier in python than

C.

3.1.4 Javascript

JavaScript (JS) is a lightweight, interpreted, or just-in-time compiled

programming language with first-class functions. While it is most

well-known as the scripting language for Web pages, many non-browser

environments also use it, such as Node.js, Apache CouchDB and Adobe

Acrobat (“JavaScript | MDN” 2022).

JavaScript is a prototype-based, multi-paradigm, single-threaded, dynamic

language, supporting object-oriented, imperative, and declarative styles. In

ROS there is rosbridge which performs serialization of ROS messages

from C type to corresponding JSON. After the message is converted to

JSON it can be sent to Web UI, database or backend server via web socket.

3.2 Robotics Software Development Framework (ROS)

The Robot Operating System (ROS) is a set of software libraries and tools that

help you build robot applications. From drivers to state-of-the-art algorithms.

Gujarat Technological University 11 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

With powerful developer tools, ROS is open source (Open Robotic, n.d.). A

detailed preview of ROS with its capabilities are explained in upcoming chapters.

3.2.1 ROS Architecture

There are basically 2 versions of ROS, ROS1 and ROS2. ROS1 mainly

supports Linux-based operating systems while on the other hand ROS2

provides more flexibility by supporting Linux, Windows, Mac and RTOS.

Transport protocol used in ROS1 is TCPROS/UDPROS, and the

communication is highly dependent on the operation of the Master node.

Hence, one can say that ROS1 is centralized in nature and there is a single

point of failure. In the case of ROS2 DDS is used for communication

which enhances fault tolerance capabilities (Vankeirsbilck 2020).

In my internship I am using ROS1 because Jetson Compute Boards use

Ubuntu 18.04 as their base operating system and ROS2 is not fully mature

for this OS.

Individual entities in ROS are called Nodes and on the basis of the nature
of those nodes, it is possible to bundle them in the form of a package.
There are even multiple tools provided by ROS which help in debugging
these nodes and as ROS is open source there is a huge community to help
developers. Owing to the above reason ROS is becoming the new industry
standard.

Fig 3.1 ROS1 And ROS2 Architecture

“Courtesy of (Y. Maruyama, S. Kato, and T. Azumi 2016)”

Gujarat Technological University 12 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.2.2 ROS Filesystem Level

The filesystem level (“ROS/Concepts - ROS” 2014) mainly covers those
ROS resources that are encountered on disks of the device running ROS,
such as:

● Packages:

Packages are the main unit for organizing software in ROS. A

package may contain ROS runtime process (nodes), a

ROS-dependent library, datasets, configuration files, or anything

else that is usefully organized together. Packages can be considered

as the most atomic build item and release item in ROS.

● Metapackages:

Metapackages are specialized packages which only serve to

represent a group of related other packages. These packages are

used as a backward compatible placeholder for converted rosbuild

Stacks.

● Package Manifests:

Manifests (package.xml) provide metadata about a package,

including its name, version, description, license information,

dependencies, and other meta information like exported packages.

● Repositories:

A collection of packages which share a common VCS system.

Packages which share a VCS share the same version and can be

released together using the catkin release automation tool bloom.

● Message (msg) types:

Message descriptions, stored in my_package/msg/type.msg, define

the data structure for messages sent in ROS.

● Service (srv) types:

Service descriptions, stored in my_package/srv/type.srv, define the

request and response data structure for services in ROS.

Gujarat Technological University 13 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.2.3 ROS Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes that

are processing data together. The basic Computation Graph concepts of

ROS are nodes, Master, Parameter Server, messages, services, topics, and

bags (“ROS/Concepts - ROS” 2014), all of which provide data to the

Graph in different ways.

● Nodes:

Nodes are processes that perform computation. ROS is designed to

be modular at a fine-grained scale; a robot control system usually

comprises many nodes. A ROS node is written with the use of ROS

client libraries, such as roscpp or rospy.

● Master:

The ROS Master provides name registration and lookup to the rest

of the Computation Graph. Without the Master, nodes would not be

able to find each other, exchange messages, or invoke services.

● Parameter Server:

The Parameter Server allows data to be stored by key in a central

location. It is currently part of the Master.

● Messages:

Nodes communicate with each other by passing messages. A

message is simply a data structure, comprising typed fields.

Standard primitive types (integer, floating point, boolean, etc.) are

supported, as are arrays and other primitive types.

● Topics:

Messages are routed via a transport system with publish / subscribe

semantics. The topic is a name that is used to identify the content

of the message.

Gujarat Technological University 14 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

● Services:

The publish / subscribe model is a very flexible communication

paradigm, but its many-to-many, one-way transform is not

appropriate for request / reply interactions, which are often

required in distributed systems. This request / reply is carried out

with the help of service.

● Bags:

Bags are a format for saving and playing back ROS message data.

3.2.4 ROS Publisher Subscriber Mechanism

A Publisher node is a program that publishes data like a camera captures

frames and then transmits it. A Subscriber is a program that subscribes to

published data. Nodes communicate with each other by passing messages

via named topics and those nodes can find each other with the help of ROS

Master (Sears 2020).

There can be multiple publishers to the same topic like velocity commands

given to a robot and there can also be multiple subscribers to the same

topic like an image frame from a camera is used by different ML models

running at the same time.

Fig 3.2 ROS Publisher Subscriber Mechanism

“Courtesy of (Sears 2020)”

Gujarat Technological University 15 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.2.5 ROS Service Mechanism

A ROS Service consists of a pair of messages: one for the request and one

for the reply. A service-providing ROS node (i.e. Service Server) offers

services like reading sensor data).

A client node (i.e. Service Client) calls the service by sending a request

message to the service provider. The client node then awaits the reply. In

ROS, a service is defined using .srv files (Sears 2020).

Fig 3.3 ROS Service Mechanism

“Courtesy of (Sears 2020)”

3.2.6 ROS Actions Mechanism

ROS Actions have a client-to-server communication relationship with a

specified protocol. The actions use ROS topic to send goal messages from

a client to the server. One can cancel goals using the action client. After

receiving a goal, the server processes it and can give information back to

the client. This information includes the status of the server, the state of the

current goal, feedback on that goal during operation, and finally a result

message when the goal is complete (“ROS Actions Overview - MATLAB

& Simulink” 2022).

Gujarat Technological University 16 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Fig 3.4 ROS Action Mechanism

“Courtesy of (“ROS Actions Overview - MATLAB & Simulink” 2022)”

3.2.7 ROS CvBridge

ROS passes around images in its own sensor_msgs/Image message format,

but many users will want to use images in conjunction with OpenCV.

CvBridge is a ROS library that provides an interface between ROS and

OpenCV (Bowman and Mihelich 2010).

While converting ROS image messages to OpenCV images, the input is

the image message, as well as an optional encoding. The encoding refers to

the destination cv::Mat Image. If the default value of “passthrough” is

given, the destination image encoding will be the same as the image

message encoding.

CvBridge will optionally do color or pixel depth conversions as necessary.

To use this feature, one needs to specify the encoding to be one of the

following strings:

● mono8: CV_8UC1, grayscale image
● mono16: CV_16UC1, 16-bit grayscale image
● brg8: CV_8UC3, color image with blue-green-red color order
● rgb8: CV_8UC3, color image with red-green-blue color order
● brga8: CV_8UC4, BGR color image with an alpha channel
● rgba8: CV_8UC4, RGB color image with an alpha channel

Gujarat Technological University 17 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Fig 3.5 ROS CvBridge Mechanism

“Courtesy of (Bowman and Mihelich 2010)”

3.2.8 ROS Bridge

There are a variety of front ends that interface with rosbridge, including a

WebSocket server for web browsers to interact with.

The rosbridge_suite package is a collection of packages that implement the

rosbridge protocol and provides a WebSocket transport layer (Mace 2017).

The packages include:

● rosbridge_library:

It contains the core rosbridge package which are responsible for

taking the JSON string and sending the commands to ROS and vice

versa.

● rosapi:

It makes certain ROS actions accessible via service calls that are

normally reserved for ROS client libraries. This includes getting

and setting params, getting topics list, and more.

● rosbridge_server:

Gujarat Technological University 18 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

While rosbridge_library provides the JSON - ROS conversion, it

leaves the transport layer to others. Rosbridge_erver provides a

WebSocket connection so browsers can “talk rosbridge”.

Fig 3.6 ROS Bridge

“Courtesy of (Marcin et al. 2015)“

3.2.9 ROS Library JS

The roslibjs is the core JavaScript library for interacting with ROS from

the browser. It uses WebSockets to connect with rosbridge and provides

publishing, subscribing, service calls, actionlib, TF, URDF parsing, and

other essential ROS functionality. Roslibjs is developed as part of the

Robot Web Tools (“roslibjs” 2019).

3.2.10 ROS Serial Library

The rosserial is a protocol for wrapping standard ROS serialized messages

and multiple topics and services over a character device such as a serial

port or network socket (“rosserial” 2018).

Client libraries allow users to easily get ROS nodes up and running on

various systems. These clients are ports of the general ANSI C++

rosserial_client library. Currently, these packages are included:

● rosserial_arduino
● rosserial_embeddedlinux
● rosserial_windows
● rosserial_mbed

Gujarat Technological University 19 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

● rosserial_tivac
● rosserial_stm32
● ros-teensy

Devices running rosserial code require a node on the host machine to

bridge the connection from the serial protocol to the more general ROS

network. Following are two such interfaces:

● rosserial_python:

A Python-based implementation (for PC usage)

● rosserial_server:

A C++ implementation based on the ShapeShifter message, some

limitations compared to rosserial_python but recommended for

high-performance applications.

Fig 3.7 ROS Serial Architecture

“Courtesy of (Andrew et al. 2018)”

3.3 Build System and Build Tool

ROS uses both build system and build tool to manage, find and build packages in

a catkinized manner. Thus, it is important to know about them.

Gujarat Technological University 20 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.3.1 Build System

Build automation involves scripting or automating the process of

compiling computer source code into binary code. ROS uses CMake as a

build system which is built on top of Make, a classic Unix build tool (“List

of build automation software”, n.d.).

3.3.2 Build Tool

Build tools are programs that automate the creation of executable

applications from source code. Building incorporates compiling, linking

and packaging the code into a usable or executable form.

In small projects, developers will often manually invoke the build process.

But it is not practical for large projects, as it is very hard to keep track of

what needs to be built, in what sequence and what dependencies there are

in the building process. Using an automation tool allows the build process

to be more consistent (“What is Build Tool? - Definition from Techopedia”

2011).

In ROS catkin is the most widely used build tool. Catkin provides

catkin_make to build workspace. Another widely used build tool is catkin

build which makes more compartmentalized environments.

3.4 Git Version Control System

Git is a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency (Git, n.d.).

When developing with ROS every sub-system development takes place in the

form of packages. And when more developers and features are there in the system

it is very critical to manage all the packages up to date. To resolve this issue, the

git system helps in distributing all the packages in the form git repositories.

Gujarat Technological University 21 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.5 CUDA Architecture

CUDA is a parallel computing platform and programming model developed by

NVIDIA for general computing on graphical processing units [GPUs]. With

CUDA, developers are able to dramatically speed up computing applications by

harnessing the power of GPUs.

In GPU-accelerated applications, the sequential part of the workload runs on the

CPU - which is optimized for single-threaded performance - while the compute

intensive portion of the application runs on thousands of FPU cores in parallel.

We are using Jetson lineup boards which allow us to use CUDA on Nvidia’s Tegra

GPU for accelerating vision algorithms. PyCUDA gives easy, Pythonic access to

Nvidia’s CUDA parallel computation API (Nvidia, n.d.).

Fig 3.8 CUDA Architecture

“Courtesy of (Debapriya, Andrew, and Valeria 2009)“

Gujarat Technological University 22 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.6 NumPy Library

NumPy (Numerical Python) is an open source Python Library that’s used in

almost every field of science and engineering. It’s the universal standard for

working with numerical data in Python, and it’s at the core of the scientific Python

and PyData ecosystems (“NumPy Library”, n.d.).

NumPy is the fundamental package for scientific computing in Python. It is a

Python Library that provides a multidimensional array object, various derived

objects (such as masked arrays and matrices), and an assortment of routines for

fast operations on arrays, including mathematical, logical, shape manipulation,

sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic

statistical operations, random simulation and much more.

3.7 Python UUIDs Module

This module provides immutable UUID objects and the functions uuid1(), uuid3(),

uuid4() and uuid5() are used for generating version 1, 3, 4, and 5 UUID. If all one

wishes for is a unique ID then either uuid1() or uuid4() are better options. But one

thing to consider is that uuid1() may compromise privacy since it creates a UUID

containing the computer’s network address. uuid4() creates a random UUID.

UUID are used for uniquely identifying each object in the vision system. ROS

provides a package called Unique_id which performs serialization and

deserialization of UUID from hexadecimal to list (“uuid — UUID objects

according to RFC 4122 — Python 3.10.4 documentation”, n.d.).

3.8 OpenCV Library

OpenCV (Open Source Computer Vision Library) is an open source computer

vision and machine learning software library. OpenCV was built to provide a

common infrastructure for computer vision applications and to accelerate the use

of machine perceptions in the commercial products (“OpenCV Library”, n.d.).

Gujarat Technological University 23 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

The library has more than 2500 optimized algorithms, which includes a

comprehensive set of both classic and state-of-the-art computer vision and

machine learning algorithms. These algorithms can be used to detect and

recognize faces, identify objects, classify human actions in videos, track camera

movements, track moving objects, extract 3D models of objects, produce 3D point

clouds from stereo cameras, stitch images together to produce a high resolution

image of an entire scene, find similar images from an image database, remove red

eyes from images taken using flash, follow eye movements, recognize scenery and

establish markers to overlay it with augmented reality, etc.

3.9 Machine Learning

Machine Learning is a branch of artificial intelligence (AI) that allows computers

to learn and improve on their own without being explicitly programmed. In vision

based systems machine learning is used in case scenarios where there is need for

object detection, and later on classifying it on the basis of certain parameters

(“Machine learning”, n.d.).

3.10 Kalman Filters

In certain cases it is very hard to directly calculate certain parameters of an AI

based system. In such cases we use Kalman Filters. It provides us a probabilistic

way to get predictions of the output that we were not able to infer directly. Kalman

filters when used for tracking objects are known as kalman trackers and the

algorithm that they use is known as Hungarian algorithm (“Kalman filter”, n.d.).

3.11 Edge Computing Device (SBC)

The NVIDIA Jetson lineup includes high-performance, power-efficient modules

in compact form-factor for developing advanced robots and other autonomous

machine products. Two of the most widely used computing boards are Jetsno

Nano and Jetson AGX series (“Embedded Systems Developer Kits & Modules

from NVIDIA Jetson”, n.d.).

Gujarat Technological University 24 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Benefit of using Jetson boards is that it comes with the NVIDIA JetPack SDK

which is one of the most comprehensive solutions for building AI applications.

One just needs to flash the board with the latest OS image, install developer tools

for both the host computer and developer kit, and install the libraries and APIs,

samples, and documentation to jumpstart the development environment.

Also, Jetson boards come with Tegra GPU from NVIDIA which are based on

MAXWELL architecture. It supports usage of CUDA for optimizing vision

systems on GPU. Also, with the NVIDIA GPU one gets the opportunity to use

TensorRT which is an inference engine developed by NVIDIA to increase

performance of AI models.

Owing to the above reasons, Jetson boards are the best choice for robotics

application and I was able to use them extensively while working at Wastefull

Insights. For small tests and development we used Jetson Nano and once the

results were satisfactory we migrated that code block to Jetson NX.

Fig 3.9 Jetson Nano and Jetson NX SBC

“Courtesy of (“NVIDIA Jetson Nano Developer Kit”, n.d.) and (“Jetson Xavier NX for

Embedded & Edge Systems | NVIDIA”, n.d.)”

Gujarat Technological University 25 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

3.12 Embedded Board

Jetson Boards do provide GPIO pins for interfacing different peripherals but they

have one limitation. They do not have internal ADC converters and also it is not

ideal to put the entire system's load on a single device which is going to use an

extensive GPU. Also, due to fluctuation in the current there are chances of the

system clock being a bit inaccurate or having less precision. Considering this is

essential to select an embedded board in our case it was TM4C1294XL or rather

TivaC Launchpad board.

The TM4C1294XL Connected LaunchPad Evaluation Kit is a low cost

development platform for ARM Cortex-M4F based microcontrollers. It is

developed by Texas Instruments (“EK-TM4C1294XL Evaluation board | TI.com”

2014).

Fig 3.10 TM4C129 Microcontroller by TI

“Courtesy of (“EK-TM4C1294XL Texas Instruments”, n.d.)”

3.13 Energia IDE

Energia is an open-source electronics prototyping platform with the goal to bring

the Wiring and Arduino framework to the Texas Instruments MSP430 based

LaunchPad.

The Energia IDE is cross platform and supported on Mac OS, Windows, and

Linux. Energia uses the mspgcc compiler by Peter Bigot. Together with Energia,

LaunchPad can be used to develop interactive objects, taking inputs from a variety

Gujarat Technological University 26 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

of switches or sensors, and controlling a variety of lights, motors, and other

physical outputs.

The framework is thoughtfully created with designers and artists in mind to

encourage a community where both beginners and experts from around the world

share ideas, knowledge and their collective experience. Professional engineers,

entrepreneurs, makers, and students can all benefit from the ease of use Energia

brings to the microcontroller (“Energia IDE”, n.d.).

In order to integrate TM4C1294 with ROS Serial there are two options, one of

which is with Energia IDE. The first rosserial_tivac library generates ROS

specific header files which are then imported in Energia IDE and that way

publisher, subscriber or service can be implemented on microcontroller.

Fig 3.11 Energia IDE Interface

“Courtesy of (“Energia IDE”, n.d.)”

3.14 Cross Compiler

Gujarat Technological University 27 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

In order to program a TM4C1294 microcontroller from an x86 architecture

system, a cross-compiler is essential. A cross compiler is a compiler capable of

creating executable code for a platform other than the one on which the compiler

is running (“Cross compiler”, n.d.).

A cross compiler is necessary to compile code for multiple platforms from one

development host. Direct compilation on the target platform might be infeasible.

GNU Toolchain provides arm-none-eabi cross-compiler which will be used to

integrate TM4C1294 with ROS.

Fig 3.12 Cross Compiler

“Courtesy of (“Cross Compilation Toolchain for ARM - Example with Raspberry

Pi”, n.d.)”

3.15 ArUco Marker

ArUco marker is a synthetic square marker composed by a wide black border and

inner binary matrix which determines its identifiers. The black border facilitates

its fast detection in the image and binary codification allows its identification.

There are other makers available like April Tags but ArUco has one of the fastest

detection (“OpenCV: Detection of ArUco Markers”, n.d.).

Gujarat Technological University 28 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Fig 3.13 ArUco Marker Of Different Dictionary Type

“Courtesy of (“OpenCV: Detection of ArUco Markers”, n.d.)”

It is possible to fetch the location of the marker but in order to do that first camera

needs to be calibrated and from its distortion matrix we will be able to locate it.

Fig 3.14 Pose Estimation With ArUco Marker

“Courtesy of (“OpenCV: Detection of ArUco Markers”, n.d.)”

Gujarat Technological University 29 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Chapter 4

System Analysis

4.1 Study of Current System

In the first month of the internship my major task was to understand the

company's existing code base. Entire code base was in a single Git repository and

there were several packages ranging from feed capturing packages, ML

implementation packages, Waste pickup selection packages, and Embedded

system packages.

We were having a conveyor based system on which plastic waste will go from

camera’s ROI to robot’s ROI and on the basis of software architecture and

implemented algorithm it will pick up waste and put it in respective bins. Instead

of going with delta bots which have low coverage area and complete joint

calculations, the system developed by Wastefull Insights was gantry based which

provided fast and efficient pick drop of the waste.

4.2 Problem and Weaknesses of Current System

Current system was developed as Proof of Concept in mind and hence there were

many scope for improvements and optimization for the system. One major issue

was that the robot was using a greedy approach to pick up the waste which might

lead to issue of local maxima in the long run and thus will result in sub-optimal

performance.

In the waste segregation system one of the important parameters is how fast the

robot can pick objects and how many it can pick in a certain duration. While

considering in the long run optimal performance will result in less number of

robots deployed at specific plants and this will reduce client’s cost of installation

and maintenance.

Gujarat Technological University 30 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Flexibility and Modularity go hand in hand, it is crucial that the software system

running the robot can be modified with any given parameters or considerations

given either by developer or client. For this reason the software architecture

should be accommodative in nature which was not the case at the movement.

Most of the logic and algorithms on which the entire system was running was in

2-3 ROS packages with one node in each. Due to this there were 8-9 levels of

abstraction in the code which were completely dependent on each other which

made the entire system rigid and prone to errors even if slight modification was

made in one node.

Also, ROS provides plenty of amazing features which will reduce system’s

overhead and there are multiple ways to perform a single task. Hence, it is

essential to use that one approach which provides best results with modularity and

robustness. I was able to see that many of those functionalities were not included

and that was emulating hard coded behavior for the software architecture.

4.3 Requirements of New System

For the new system to be more efficient, flexible and robots following

modifications are essential:

● First and foremost is the structure of ROS packages with singular package

structure. All the python executables should be placed in the scripts folder

of respective packages. Also, Setup.py should be configured with include

directory as python package initializer. All the 3rd party or user files,

libraries and dependencies should be included in src directory with

package name abstraction layer. Configuration files should be included in

the config directory of respective folders.

● ROS system software should be modified and include services and actions

wherever necessary instead of just relying on publisher subscriber

Gujarat Technological University 31 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

functionality.This is make a significant different to message transmission

overhead of the entire system

● Currently every package builds their own respective ROS messages. This

is beneficial to customize a specific set of messages but it will be

redundant if two nodes of packages are building similar message types.

Also, if one needs to modify one specific message then he/she needs to

find all the copies and also all of those packages need to declare message

building dependencies. The best approach is to make a separate ROS

message package from which all the nodes will include message

definitions.

● In vision based system cameras are of prime importance and with that

comes frame rate. When using ROS based image processing packages

there might occur some processing delay. Not only in image processing,

but in all message transmission if the message size is larger then it is likely

that there will be some transmission delay. So, the new system would have

to take that into consideration because if not then the robot will not be able

to pick drop waste.

● To optimize the system it is important to revamp the software architecture

in ROS to provide sufficient flexibility with which optimization algorithms

can be integrated and tested. Also, for the end user there needs to be an

operator's UI interface with which the robot and vision system can be

controlled.

● Another import parameter is the security of the system. As ROS uses

TCP/UDP protocol based on IP it is very important that none of the ports

are left open and the UI created should be internally routed so that no one

even in the same network can access it other than the device on which it is

running.

Gujarat Technological University 32 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

● Unit testing framework integrated with ROS and development of

structured unit tests to identify system fault in real-time on validating

passed and failed tests.

4.4 Features of New System

After implementation of the above suggested requirements following will be the

features of the new system:

● Modular in nature
● Non-redundant builds
● Robust
● Structured
● Secured
● Fault-Tolerant
● Efficient
● Maintainable
● Portable

4.5 Literature Review of Optimization Algorithms

One of the important research papers that helped in designing optimization

algorithms was “Toward Fast and Optimal Robotic Pick-and-Place on a Moving

Conveyor” by Shauai D. Han, Si Wei Feng and Jingjin Yu. According to this

paper when a greedy approach is considered like SPT or FIFO, it will work with a

very short horizon and will generally end up in sub-optimality (Han, Feng, and Yu

2019).

A significant challenge in the design and implementation of object picking

sequence selection algorithm is how to deal with the geometry and dynamics of

the robots that are involved. This was not that much of a concern to use due to the

gantry based system. When visualizing typical PnP Time Profiles, following

results were achieved by the researchers.

Gujarat Technological University 33 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

(a) Simplified telescoping robot. (b) Delta robot (c) SCARA robot

Fig 4.1 PnP Time Profile

“Courtesy of (Han, Feng, and Yu 2019)”

After these results it is essential to implement optimization algorithms for pick

and place robots. There are basically two options available, one is Exact and

another one is Approximate algorithm for selecting the best picking sequence.

4.5.1 Exhaustive Search Methods

With the GetPnPTime routine, a baseline exhaustive search routine is

straightforward to obtain. We call such a routine OPTSEQ, which

computes the optimal object picking sequence for a given horizon. After

this dynamic programming is applied to speed up OPTSEQ, yielding the

routine OPTSEQ DP, which is significantly faster yet without any loss of

optimality (Han, Feng, and Yu 2019).

Fig 4.2 OPTSEQ Algorithm

Gujarat Technological University 34 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

OPTSEQ Algorithm prioritizes the best sequence from all that are
available. The issue with this algorithm is that it will perform redundant
calculation as it is not storing details about previous sequence
performance.

Fig 4.3 OPTSEQDP Algorithm

OPTSEQDP Algorithm uses OPTSEQ with dynamic programming.
Hence, it will store detail about previous sequences and that way be
non-redundant. Also, it is dynamic in nature and hence will not search
entire problem space and this saves time and computation.

4.5.2 Local Augmentation Method

In consideration with OPTSEQDP, many different heuristics were used to

further boost its efficiency. But there is another method which achieves

optimality close to OPTSEQDP but scales are much better. This method is

called the local augmentation-based method SUBOPTDP, which uses

OPTSEQDP as a subroutine.

One consideration was that the conveyor will run without stopping for

extended periods of time, for the continuous setting, OPTSEQDP or

SUBOPTDP are invoked repeatedly with real-time locations of all the

pick-able objects in the workspace.

Gujarat Technological University 35 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Fig 4.4 SUBOPTDP Algorithm

This is one of the most optimized algorithms. It uses OPTDP algorithm but

instead of applying it on sequence, it will select a sub-sequence. This way

the solution state space will reduce drastically and achieve optimum

solution in the fastest possible manner.

4.5.3 Experimental Results by Researcher

After evaluating all the three algorithms, the observation made by the

researchers was that the active workspace in a conveyor PnP system

contains a few to low tens of objects. From the following figure, one can

observe that both OPTSEQDP and SUBOPTDP can complete a single

sequence computation for ten objects within 10-4 seconds and fifteen

objects with 10-2 seconds. Because, Delta and SCARA-based PnP systems

generally do not pick more than a single digit number of objects per

second, OPTSEQDP and SUBOPTDP impose negligible time overhead.

As such, they are sufficiently fast for industrial applications.

Gujarat Technological University 36 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Fig 4.5 Comparison Of Different PnP Algorithms

“Courtesy of (Han, Feng, and Yu 2019)”

4.6 Selection of Optimization Approaches and Justification

After having studied the above tested algorithms by the researchers, they seemed

viable options which could be tested on the Wastefull Insights’ robot but, there

was one major difference. All the above three stated algorithms were tested and

experimented on robotics arms and not gantry systems. So, considering this

execution plan included re-structuring ROS software architecture in such a

manner that all three algorithms could be tested and from them the best suited one

with optimal performance was finalized.

Starting with Optimum sequence generation and then using dynamic

programming with it should increase the efficiency of the robot. One more

approach would be to use concepts of scheduler in conjunction with these

algorithms and observer performance differences.

Gujarat Technological University 37 Babaria Institute of Technology

Project ID - 208496 Technology Stack and
Hardware Platform

Length Scaling on x-axis / Performance

Algorithms 6000 8000 10000 12000 14000

SUBOPTDP <60% <80% <90% <95% ~100%

SPT ~60% <80% <85% <90% <95%

EUCLIDEAN <65% <75% <85% <90% <95%

FIFO <40% <60% <80% <90% <100%

Table 4.1 Comparison Between Different Pick And Place Algorithm
“Referenced from (Han, Feng, and Yu 2019)”

Gujarat Technological University 38 Babaria Institute of Technology

Project ID - 208496 System Design

Chapter 5

System Design

5.1 System Design and Methodology

System Design according to current architecture is as follow:

Fig 5.1 Initial System Design

Major problem with this is modularity and maintainability. Also, whenever

someone who has not written the system tries to understand it, it might take

him/her a while to understand the flow of functions and level of abstractions.

Restructured System Design with the new architecture will be as follow:

Fig 5.2 Restructured System Design

Gujarat Technological University 39 Babaria Institute of Technology

Project ID - 208496 System Design

This gives more flexibility for modifications that can take place later on

depending on the client's need or upgradation of the optimization algorithm.

Fig 5.3 System Design Flowchart

Gujarat Technological University 40 Babaria Institute of Technology

Project ID - 208496 System Design

Images from the camera feed are taken as input and converted to ROS Image

message types from CV Images using CvBridge. If the image frame captured is

empty then it is skipped. After this using image processing, frames are rectified

from any distortions. From there images are sent to an object detection algorithm

which will classify waste.

From here detected waste will go on two different paths. First it will go to the

initialization node where waste is categorized according to their class and bin

locations are fed into the system. After this waste details will be stored in the

waste tracker node and its coordinate on the conveyor will be continuously

updated.

And the second path is where waste UUIDs are transferred to the optimization

algorithm node where the best sequence of execution is selected and fed to the

scheduler. Scheduler will generate necessary delay between pick and place of two

consecutive wastes and send final commands to the microcontroller node which

will then control the robot.

This entire process will continuously run in a loop until the system is either

stopped, or it enters into any error state. One of the major advantages of this

architecture is that it is modular in nature and one part of the system is not

dependent or has adverse effects on other part of the system. It is kind of a black

box system where only input and output parameters are taken into consideration.

Still even after this there will be some limitations but they will be because ROS1

has a centralized approach wherein ROS Master is taking care of everything. In

the later iteration of the system when Nvidia launches support for ROS2 we would

be able to migrate this into complete decentralized architecture.

Gujarat Technological University 41 Babaria Institute of Technology

Project ID - 208496 System Design

5.2 Input / Output and Interface Design

5.2.1 State Transition Diagram

Following is the state transition diagram of the system before optimization

and in this design everything is taking place in linear fashion due to which

there are many possible loopholes in which system might get stuck with

the problem of local maxima.:

Fig 5.4 Initial State Transition Diagram

Following is the state transition diagram of the system after optimization:

Fig 5.5 Optimized State Transition Diagram

Gujarat Technological University 42 Babaria Institute of Technology

Project ID - 208496 System Design

5.2.2 Operator’s UI Interface Design

Following is the rough format of the frontend interface which will be used

by the operator to control and monitor the robot.

Fig 5.6 Operator’s UI Design

Gujarat Technological University 43 Babaria Institute of Technology

Project ID - 208496 Implementation

Chapter 6

Implementation

6.1 Implementation Platform and Environment Setup

6.1.1 Jetson Nano Setup

One of the major considerations while setting up Jetson Nano is the

version of the JetPack SDK. Each JetPack SDK comes with a specific set

of dependencies. Consider JetPack 4.6.1, It comes with following:

● OS - Ubuntu 18.04

● TensorRT - Version 8.2.1

● cuDNN - Version 8.2.1

● CUDA - Version 10.2

Hence, it becomes very important to consider the version of all the

included dependencies because version compatibility is very important.

The JetPack SDK version that I am targeting is 4.5.1.

Another important consideration is the OpenCV version. With the JetPack

SDK 4.5.1 we receive OpenCV 4.1.1 but Wastefull Insights is using

OpenCV 3.4.6 which runs efficiently on Jetson Nano and NX.

Fig 6.1 Jetson Nano Home Interface After Boot

Gujarat Technological University 44 Babaria Institute of Technology

Project ID - 208496 Implementation

6.1.2 OpenCV 3 Installation

Installing OpenCV 3 or 4 on an x86 architecture computer is pretty

straightforward but that is not the case with Jetson compute boards. Jetson

boards are edge computing devices because of which they are resource

constrained and when installing OpenCV on Jetson Nano with 4GB of

RAM one needs to increase swap memory. Even after this entire

installation process will take nearly 2-3 hours considering only core

packages are being installed.

OpenCV comes with contrib modules which are developed and maintained

by the community. But one needs to add them separately. ArUCo is one

such contrib module and hence I had to include contrib modules in

installation.

Directly prompting make and cmake can be tedious and prone to errors. To

avoid that there is a GUI based utility called cmake-gui which provides

terminal as follow:

Fig 6.2 CMAKE GUI Console

Gujarat Technological University 45 Babaria Institute of Technology

Project ID - 208496 Implementation

6.1.3 ROS Melodic Installation

There are various versions of ROS and it depends on the underlying

operating system which one to install. As Jetson Nano supports only

Ubunut 18.04, with it ROS Melodic can be installed.

Fig 6.3 ROS Melodic Logo

“Courtesy of (Foote 2018)”

There are two options available for ROS installation, one is building from

source and another one is installing pre-build binaries. The issue is that

ROS melodic when built from binaries comes with python 2.7 support

which reached its EOL. Hence, another consideration while installing ROS

Melodic is to build it manually from source by replacing python2.7

headers with that of python3.

Another important note is that though ROS Melodic will be built with

python3 support explicitly, one needs to build cv_bridge and image_proc

packages explicitly in the workspace from which it will be used.

6.1.4 Pylon SDK Installation and Setup

In order to reduce transmission delay and achieve more customizability,

instead of using a USB camera, Wastefull Insights is using a GiGe camera.

This camera is from Basler and it comes with its own SDK called Pylon.

Basler people have provided a ros_pylon package to integrate Pylon

camera with ROS system but it will require Pylon SDK.

Gujarat Technological University 46 Babaria Institute of Technology

Project ID - 208496 Implementation

ROS package for pylon camera provides all the features with

camera_info_manager which tracks camear_calibration parameters and

configurations.

Fig 6.4 Pylon SDK Console

GiGe Camera works on IP so they require IP configuration setup and for

that Pylon SDK provides pylon IP configuration tool.

Fig 6.5 Pylon IP Configuration Tool

Gujarat Technological University 47 Babaria Institute of Technology

Project ID - 208496 Implementation

6.2 ROS Basics Examples

6.2.1 ROS Publisher Subscriber Implementation

For Publisher Subscriber, roscore is running in the background. In the

figure below, the top terminal is a Talker Node which is Publisher “hello

world” message with ROS clock on a /chatter topic. And in the bottom

terminal a Listener Node which is a subscriber subscribing to /chatter topic

and displaying ROS messages sent by Publisher Node.

Fig 6.6 ROS Talker and Listener Node

Following output is from rqt_graph which is a GUI tool in ROS used to

visualize running nodes and topics. According to this there are two nodes

Gujarat Technological University 48 Babaria Institute of Technology

Project ID - 208496 Implementation

called talker and listener who are using /chatter topic for communicating

ROS messages. Rqt_graph is an essential tool for debugging ROS software

systems.

Fig 6.7 Pub Sub Computational Graph in rqt_graph

6.2.2 ROS Service Implementation

In the following snapshot a service server on the top terminal is

implemented which takes 2 integers as input and returns their sum. In the

bottom terminal a service client is executed which sends those 2 integers.

Also, roscore is running in the background.

ROS services are following client server architecture and due to that

reason while the service is being served by the server, the client will be

paused. This kind of structure is very useful in ROS to start and stop

certain parameters of a robot.

One down side to service is that they are synchronous in nature and you

won’t be able to debug it with rqt_graph.

Gujarat Technological University 49 Babaria Institute of Technology

Project ID - 208496 Implementation

Fig 6.8 ROS Service For Adding Two Integers

6.2.3 ROS Action Implementation

Starting roscore so that all the nodes can find each other as follow:

Fig 6.9 ROS Core Execution

Gujarat Technological University 50 Babaria Institute of Technology

Project ID - 208496 Implementation

After the roscore is up and running, the action server will be executed.

Here there is a simple action server which takes 20 as an input argument

and generates fibonacci sequence till the first 20 digits.

Fig 6.10 ROS Fibonacci Action Server

In order to send this number 20 we will run an action client as follow:

Fig 6.11 ROS Fibonacci Action Client

ROS actions provide feedback through which we can monitor progress of

our actions. For that we will echo that particular action server’s feedback

topic.

Fig 6.12 ROS Fibonacci Action Server Feedback

Gujarat Technological University 51 Babaria Institute of Technology

Project ID - 208496 Implementation

6.2.4 ROS TurtleSim Implementation

In order to learn ROS there is a tool called TurtleSim which is basically a

2D simulator with which we can control a turtle in 2D plane. Following is

its execution of roscore in TurtleSim Window.

Fig 6.13 ROS TurtleSim And ROS Core

After this we can launch a teleop node as shown in the bottom terminal of

the following figure. With the help of a teleop node one can use a

keyboard to move turtles in the 2D plane.

Fig 6.14 ROS Teleop

Gujarat Technological University 52 Babaria Institute of Technology

Project ID - 208496 Implementation

6.2.5 ROS RVIZ AMR Implementation

In the initial days of the internship I would give 5-10min a day to learn

something new and different in ROS. In that process I designed a 2 wheel

differential drive robot in Fusion360 and converted it into URDF. This

built a package called micro_bot_description using which I was able to

visualize robot models in a ROS tool called RVIZ. RVIZ is used to

visualize sensor data of a robot.

Fig 6.14 Differential Drive Robot (RVIZ)

6.2.6 ROS Gazebo AMR Implementation

Gazebo is a 3D simulator which can be used with ROS. After visualizing a

robot model in RVIZ I thought of importing that model in Gazebo,

attacking a LiDaR plugin with it and running the robot in the Gazebo

world with a keyboard. Following is the implementation of that.

All of the above illustrated tasks were performed during the internship to

brush up ROS skills and evaluate pros and cons of different features that

ROS provides.

Gujarat Technological University 53 Babaria Institute of Technology

Project ID - 208496 Implementation

Fig 6.16 Differential Drive Robot (Gazebo Environment)

6.3 Updating apt-source list

Upfront, the /etc/apt/source.list is a configuration file for Liux’s Advanced

Packaging Tool, that holds URLs and other information for remote

repositories from where software packages and applications are installed.

When considering the case scenario of SBC like Jetson it is essential to

update this apt-source list because most of the time we would be using

older versions of dependencies.

If apt-source list is not modified then it would not be possible to update the

system and that will restrict in performing any modification in the system.

It is also essential if one wants to update an existing installation, like if the

OpenCV version needs to be upgraded from 3.4.6 to 3.4.8.

Gujarat Technological University 54 Babaria Institute of Technology

Project ID - 208496 Implementation

Fig 6.17 Apt Source List for Jetson

6.4 ROS Workspace and Package Configuration

As everything in ROS is in the form of packages, it is essential to manage

the Catkin workspace. There are multiple options available from

catkin_make, catkin build to catkin_make_isolated. Generally, I used

catkin_make to build and catkin build to configure my ROS workspace.

Dependency management was complex with CMakeLists.txt as it includes

various macros ranging from adding packages, configuring them which

might be needed either at build time or run time. For this purpose 3

workspace methods were used by me. One was for testing, another for

development and last one to review and finalize one.

Gujarat Technological University 55 Babaria Institute of Technology

Project ID - 208496 Implementation

Fig 6.18 Workspace Structure For ROS

A package in ROS should have the following structure and one important

consideration for Python packages is where __init__.py file will go. One

of the solutions is to create an abstract folder with the same name as the

package name and place __init__.py inside it. Now you can have a folder

called scripts where you can place all of your Python executables and 3rd

party modules are kept inside src again with abstraction of package name.

At last there is one more file required called setup.py in the root directory

of the package which will tell the catkin system how to initialize this

package.

Fig 6.19 Package Structure For ROS

I found 2 ways in which a Python executable can be called. One was to

add scripts directory path in the setup.py file itself and while building

workspace it will store all the python scripts in a single bin directory. This

is not a wise choice from a security point of view as well as coding point

of view.

Gujarat Technological University 56 Babaria Institute of Technology

Project ID - 208496 Implementation

Another way is to uncomment catkin_python_install() from

CMakeLists.txt of that specific package. This way catkin will know the

location of the Python script and while executing will read from the src

directory.

Fig 6.20 Setup.py File

6.5 TM4C1294 Integration with ROS Serial

6.5.1 TivaWare SDK and Cross Compiler Setup

In order to build firmware around Tiva boards, it is essential to have

TivaWare SDK which comes with board specific details, header files and

some examples to test. As Tiva boards are arm based, I had to configure a

cross-compiler which supports arm boards. One such cross-compiler is

arm-none-eabi (GNU Toolchain). After Ubuntu 14 one cannot apt-get it

with PPA and hence one has to manually download it. Also, after

installation symbolic links are to be configured.

Fig 6.21 Check Installation Of GCC And Cross Compiler

Gujarat Technological University 57 Babaria Institute of Technology

Project ID - 208496 Implementation

6.5.2 Automation Script for Tiva Setup

Manual setup takes a lot of time and it is tedious. Hence, I developed a

bash script in which one just needs to download the TivaWare SDK and

place it in the tar_file directory. After that bash script will install and

configure everything on its own.

Fig 6.22 Bash Script For Tiva Setup

6.5.3 TM4C1294 Setup and Test

In order to develop firmware for TivaC, a new ROS workspace called

emb_ws was created. Next task was to set up rosserial and rosserial_tivac.

Rosserial is the main ROS package which generates roslib which will be

compiled with code for TM4C1924.

Rosserial_tivac is a client library which provides us utilities built on top of

catkin_make for generating axf file, flashing it and monitoring the

program's memory footprint.

When using rosserial_tivac it is important to build roslib first so that it can

be compiled when an axf file is generated. If this is not done then custom

ROS messages won’t build and header not found error will emerge.

One another issue is that the first rosserial_tivac package needs to be built

with catkin _make and after that install it with catkin_make install. Only

Gujarat Technological University 58 Babaria Institute of Technology

Project ID - 208496 Implementation

after this custom rosserial based code could be written and executed in

another package.

After the entire setup was complete I was able to flash a simple blink

program from the TivaWare SDK and flash it using lm4flash. To test

integration with ROS was successful or not I programmed a Tiva based

publisher as follow:

Fig 6.23 TivaC ROS Publisher

This is written in the scripting language used by Energia and I was able to

receive output as expected.

6.6 Conveyor Velocity Estimation with ArUco Marker

6.6.1 Camera Calibration

When considering pinhole cameras, they have a major issue of distortion

in the images. There can be radial or tangential distortion in the images.

Hence, to rectify these images we need a distortion coefficient and camera

Gujarat Technological University 59 Babaria Institute of Technology

Project ID - 208496 Implementation

matrix. To get intrinsic and extrinsic properties camera calibration is

essential.

Fig 6.24 Camera Calibration Procedure

“Courtesy of (Hyowon et al. 2015)”

In order to perform camera calibration I found a package in ROS called

camera_calibration which provided me with output in the form of a YAML

file.

6.6.2 ArUco Marker Generation and Detection

After the camera calibration, I wrote a python script which will generate

an ArUco maker on the basis of input dictionary type and class. Here, I am

using the ArUco module by OpenCV.

Fig 6.25 ArUco Marker Generation Script

Gujarat Technological University 60 Babaria Institute of Technology

Project ID - 208496 Implementation

With the help of a camera calibration file I was able to create another

script for ArUco Marker pose estimation which gave coordinates of

markers with reference to the camera in mm.

Fig 6.26 ArUco Marker Detection Script Directory

Now, the above test was done with Python, and now I had to integrate it

with ROS. To integrate the USB camera with ROS I used the usb_cam

package in ROS and passed the camera_configuration file to

camera_info_manager.

Atlast I programmed a launch file to execute usb_cam, aruco_detection

and img_view node which gave following output:

Fig 6.27 ArUco Marker Pose Estimation

Gujarat Technological University 61 Babaria Institute of Technology

Project ID - 208496 Implementation

6.6.3 Conveyor Velocity Estimation

After receiving pose estimation of ArUco Marker with USB camera, I

integrated it with Pylon GiGe camera and performed camera calibration.

One issue I faced with the Pylon camera was that detection of markers was

not steady and to solve this problem I integrated image_proc package

which rectified output images from camera. Even after this another issue

of large image overhead was a problem. For this instead of using raw

transport I started working with compressed transport. This reduced

bandwidth of the system significantly.

Finally I was able to test the velocity of the conveyor belt with the help of

ArUco marker. The velocity that I received was in about 2% error range

when validated with external optical encoder.

Fig 6.28 Conveyor Velocity Estimation With ArUco Marker

6.7 Operator’s UI Integration with ROS

As the operator will need to interact with the robot, I had to integrate Web based

UI with rosbridge. For testing purposes I developed a sample HTML document

Gujarat Technological University 62 Babaria Institute of Technology

Project ID - 208496 Implementation

and connected a web socket with it through which I was able to communicate with

the ROS system. After that I was able to integrate ROS messages and visualize

them on the Web UI.

In order to update system information on the operator's UI. I developed a

diagnostic node which will subscribe messages from the ROS system and publish

them to the UI. With this I was able to map those data to UI tags and visualize

them.

String data transmission to rosbridge was simple but I had some issue with image

stream visualization on the UI. I was trying to send raw_image to rosbridge which

was working but rosbridge won’t be able to store it in placeholder and display it

on UI. This is because message serialization protocol for images only considers

compressed images.

For launching Web UI a server was required which will run locally on SBC. For

this I used the http.server library in Python. There were two options available for

the routing server. One was using localhost with which no one will be able to

access it even in the same gateway and another option was to use IP given to the

device by router through DNS. But the issue with this approach was that anyone

in the same gateway with the IP of the device can access the operator's UI.

Considering the security I fixated on the 1st approach.

Fig 6.29 Operator’s UI

Gujarat Technological University 63 Babaria Institute of Technology

Project ID - 208496 Implementation

6.8 Modified ROS Software Architecture

Following were some of the major modifications done in the Software

Architecture of the robot:

● Integration of Scheduler to optimize pick and place
● UUID Assignment of each detected waste
● Single ROS message and srv generation package
● Faster computation with numpy
● Customized messages and services
● Dynamic time and velocity parameters instead of static
● Structured workspace and packages
● Customized Kalman Tracker
● Operator’s UI for robot and detection control with security

Gujarat Technological University 64 Babaria Institute of Technology

Project ID - 208496 Testing

Chapter 7

Testing

7.1 Testing Plan

I used a unit testing approach throughout the internship. Every module that I wrote

was tested in an iterative manner. All the tests were done on a video feed and once

the entire system gave satisfactory results, real-time testing took place.

ROS provides two testing platforms. Gtest for testing C++ based code and

nosetest for Python. I used rosunit and rostest in some cases to validate actual and

expected output in the system.

ROS also has two different types of testing constructs, rosunit is for testing

functionalities inside a single node and rostest in between multiple nodes.

7.2 Test Result and Analysis

System was able to pass almost all the test cases except in some cases OpenCV

resize function would fail. To overcome this a check for a non null frame was kept

in place. Another important parameter was the transmission delay in the entire

system with frame delay. As it is dynamic in nature a separate node which acts as

an evaluator was designed to take care of it (“Quality/Tutorials/UnitTesting”

2019).

7.2.1 Test Cases

While performing unit tests, some tests were very crucial and they got

bundled into test suites. Following are some of the important test cases:

● Frame captured by camera is not none
Every frame of a camera once resized needs to pass conversion test
or else the AI model won’t be able to detect waste optimially.

Gujarat Technological University 65 Babaria Institute of Technology

Project ID - 208496 Testing

● CvBridge is successfully able to convert camera images to ROS
message type with specific encoding

● Time taken by detection model is variable in nature, but there is an
upper bound to it which should not be crossed

● UUID generated by type uuid4 are unique in nature
Unique IDs generated by uuid modules depend on system
configuration and if they get duplicated considering the time
parameter of the system or device's network details get exposed
then it will be a security concern.

● No message is being dropped while transmission
Rate of publishing data and that of subscribing needs to be in
coherence with each other so that there is no loss of data.

● Message buffer is considered accordingly in each node

● Kalman Tracker is effectively able to track waste without being
affected by increased detections

● On selecting any particular sub-sequence, it should have the least
loss count. Loss count is generally given when selecting the nth
element in the sequence won’t let us select (n+1)th element
because it will be out of the robot's ROI.

● Average velocity of the conveyor is within 2% of the value derived
by external optical encoder

● Scheduler is able to prioritize sequences with least effort and
avoids local maxima

Gujarat Technological University 66 Babaria Institute of Technology

Project ID - 208496 Conclusion and Discussion

Chapter 8

Conclusion and Discussion

8.1 Result and Analysis of Project Viabilities

Right now there are two architectures on which the system can run. Previous

architecture relied on sequential flow of execution due to which it will take a

greedy approach of picking up waste. Basically, there was no block which would

validate and compare different picks in the system.Consider a case scenario where

a object sequence of ID (1,2,3) is detected in frame and when the robot picks

object with ID 1 , meanwhile object with ID 2 will be out of robot’s region of

interest. So, it will miss objects with ID 2. This is the issue with greedy

approaches.

To overcome local maxima problem, new architecture is designed considering that

it will perform comparison between permutations of sequences for a given number

of objects in the frame. Consider the previous example, but in this architecture

permutations of ID (1,2,3), (1,3,2) and so on will be evaluated. And the sequence

in which we are able to pick the maximum number of objects is finalized. This

will overcome the issue of local maxima.

8.2 Workflow Problems Encountered and Possible Solutions

One of the major issues that I faced during the internship was in regards to

balancing time between research and implementation. I had to optimize the system

and I found multiple research papers, some of which were efficient and others

might not even fit our case scenario. This was a major hindrance to me in the first

month of internship but later on I was able to mitigate this issue.

Not using git extensively leads me to the situations where I have to perform the

same task again and again on multiple systems. For example I modified rospkg

paths in my local system then I have to do the same on another Jetson Nano and

last in Jetson NX. This issue got later resolved at the end of internship and the

Gujarat Technological University 67 Babaria Institute of Technology

Project ID - 208496 Conclusion and Discussion

solution was to disintegrate all the packages in the form of git repos. Every time a

change is made locally it is committed on the git and with simple commands like

git pull all the system will have uptodate code.

Initially I had a tendency to study the entire sub-system or functionality in depth

to such an extent that I will spend countless hours reading its implementation.

There was a bright side to this as I was able to think of various approaches to

optimize the system but this took my time from the current task which I was

performing. To mitigate this issue I will consider sub-blocks of the system as

black box and consider only input output parameters.

8.3 Summary / Conclusion of Internship

I can honestly say that my time spent interning with Wastefull Insights resulted in

one of the best times of my life. Not only did I gain practical skills but also had

the opportunity to meet many fantastic people. The atmosphere at the office was

always welcoming which made me feel right at home or at yet another home.

Additionally, I felt like I was able to contribute to the company by assisting and

working on optimization of their waste segregation robot. For example, I

restructured underlying ROS architecture to make it more flexible, modular and

robust. Also, developed an Operator’s UI with which one can control both robot

and camera detection. In addition to these tasks, I developed velocity estimation

algorithm and optimization algorithm to increase overall throughput of the robot.

While I was able to learn a lot from normal office life, my two most memorable

days were the day I joined and the day I tested my architecture on the robot. From

not knowing anything about the system to restructuring the entire architecture

with optimization gave me a huge sense of accomplishment and confidence.

Overall, my internship at Wastefull Insights has been a success. I was able to gain

practical skills, work in a fantastic environment, and make connections that will

last a lifetime. I could not be more thankful to Ms. Manali Agarwal and Mr.

Rishabh Shah for providing me this opportunity and pushing me to break my self

Gujarat Technological University 68 Babaria Institute of Technology

Project ID - 208496 Conclusion and Discussion

perceived limitations. I also received a full time offer to work with them, looking

forward to contributing to this case of “Zero Waste World”.

8.4 Limitation and Future Enhancement

The newly implemented architecture is a progression on the older one but there

are some limitations to it. As we are performing permutations for a given set of

objects in a frame, it might happen that there are say 10 detected objects. For

instance, if we select a sequence of 10 objects then total permutations will be

3628800 sequences. It is not possible to evaluate all these sequences in a period of

3 seconds which is time for objects in the camera's region of interest.

Inorder to solve this problem there needs to be a reduces which will evaluate

previous drop position of robot and store evaluation time of the previous element

in a specific sequence. With this we wouldn’t have to calculate all the sequences.

Also, we can add a filter for minimum acceptable loss count.

Gujarat Technological University 69 Babaria Institute of Technology

Project ID - 208496

References

Andrew, West, Arvin Farshad, Martin Horatio, Watson Simon, and Lennox Barry. 2018.

ROS Integration for Miniature Mobile Robots.

Bowman, James, and Patrick Mihelich. 2010. “cv_bridge.” ROS Wiki.

http://wiki.ros.org/cv_bridge

Central Pollution Control Board. 2021. “Annual Report 2019-20 on Implementation of

Plastic Waste Management Rules, 2016.” Central Pollution Control Board.

https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf.

“C++ Introduction.” n.d. W3Schools. Accessed April, 2022.

https://www.w3schools.com/cpp/cpp_intro.asp.

“Cross Compilation Toolchain for ARM - Example with Raspberry Pi.” n.d.

Microcontrollers Lab. Accessed April, 2022.

https://microcontrollerslab.com/cross-compilation-toolchain-for-arm-example-wit

h-raspberry-pi/.

“Cross compiler.” n.d. Wikipedia. Accessed April, 2022.

https://en.wikipedia.org/wiki/Cross_compiler.

Debapriya, Chatterjee, Deorio Andrew, and Bertacco Valeria. 2009. Event-driven

gate-level simulation with GP-GPUS. 10.1145/1629911.1630056.

“EK-TM4C1294XL Evaluation board | TI.com.” 2014. Texas Instruments.

https://www.ti.com/tool/EK-TM4C1294XL.

“EK-TM4C1294XL Texas Instruments.” n.d. Mouser. Accessed April, 2022.

https://www.mouser.in/ProductDetail/Texas-Instruments/EK-TM4C1294XL?qs=Y

aA%252B3EhhSt21BnIfZSMnRQ%3D%3D.

Gujarat Technological University 70 Babaria Institute of Technology

http://wiki.ros.org/cv_bridge
https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf
https://www.w3schools.com/cpp/cpp_intro.asp
https://microcontrollerslab.com/cross-compilation-toolchain-for-arm-example-with-raspberry-pi/
https://microcontrollerslab.com/cross-compilation-toolchain-for-arm-example-with-raspberry-pi/
https://en.wikipedia.org/wiki/Cross_compiler
https://www.ti.com/tool/EK-TM4C1294XL

Project ID - 208496

“Embedded Systems Developer Kits & Modules from NVIDIA Jetson.” n.d. Nvidia.

Accessed April, 2022.

https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/.

“Energia IDE.” n.d. Energia IDE. Accessed April, 2022. https://energia.nu/.

Foote, Tully. 2018. “ROS Melodic Morenia Logo and Tshirt Campaign.” ROS.

https://www.ros.org/news/2018/04/ros-melodic-morenia-logo-and-tshirt-campaign

.html.

Git. n.d. Git SCM. Accessed April, 2022. https://git-scm.com/.

Han, Shuai D., Si W. Feng, and Jingjin Yu. 2019. “Toward Fast and Optimal Robotic

Pick-and-Place on a Moving Conveyor.” CoRR abs/1912.08009.

http://arxiv.org/abs/1912.08009.

Hyowon, Ha, Bok Yunsu, Joo Kyungdon, Jung Jiyoung, and Kweon Inso. 2015. Accurate

Camera Calibration Robust to Defocus Using a Smartphone.

10.1109/ICCV.2015.101.

“JavaScript | MDN.” 2022. MDN.

https://developer.mozilla.org/en-US/docs/Web/JavaScript.

“Jetson Xavier NX for Embedded & Edge Systems | NVIDIA.” n.d. Nvidia. Accessed

April, 2022.

https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-x

avier-nx/.

“Kalman filter.” n.d. Wikipedia. Accessed April, 2022.

https://en.wikipedia.org/wiki/Kalman_filter.

“List of build automation software.” n.d. Wikipedia. Accessed April, 2022.

https://en.wikipedia.org/wiki/List_of_build_automation_software.

Gujarat Technological University 71 Babaria Institute of Technology

https://www.nvidia.com/en-in/autonomous-machines/embedded-systems/
https://energia.nu/
https://www.ros.org/news/2018/04/ros-melodic-morenia-logo-and-tshirt-campaign.html
https://www.ros.org/news/2018/04/ros-melodic-morenia-logo-and-tshirt-campaign.html
https://git-scm.com/
http://arxiv.org/abs/1912.08009
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/List_of_build_automation_software

Project ID - 208496

Mace, Jonathan. 2017. “rosbridge_suite.” ROS Wiki. http://wiki.ros.org/rosbridge_suite.

“Machine learning.” n.d. Wikipedia. Accessed April, 2022.

https://en.wikipedia.org/wiki/Machine_learning.

Marcin, Szlenk, Zielinski Cezary, Figat Maksym, and Kornuta Tomasz. 2015.

“Reconfigurable Agent Architecture for Robots Utilising Cloud Computing.”

Advances in Intelligent Systems and Computing 351 (1).

10.1007/978-3-319-15847-1_25.

“NumPy Library.” n.d. NumPy.org. Accessed April, 2022. https://numpy.org/.

Nvidia. n.d. “CUDA Zone.” NVIDIA Developer. Accessed April, 2022.

https://developer.nvidia.com/cuda-zone.

“NVIDIA Jetson Nano Developer Kit.” n.d. NVIDIA Developer. Accessed April, 2022.

https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

“OpenCV: Detection of ArUco Markers.” n.d. OpenCV documentation. Accessed April,

2022. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html.

“OpenCV Library.” n.d. OpenCV. Accessed April, 2022. https://opencv.org/about/.

Open Robotic. n.d. “Robot Operating System.” ROS: Home. Accessed April, 2022.

https://www.ros.org/.

Programiz. n.d. “Learn C Programming.” Accessed April, 2022.

https://www.programiz.com/c-programming.

“Quality/Tutorials/UnitTesting.” 2019. ROS Wiki.

http://wiki.ros.org/Quality/Tutorials/UnitTesting.

“ROS Actions Overview - MATLAB & Simulink.” 2022. MathWorks.

https://www.mathworks.com/help/ros/ug/ros-actions.html.

Gujarat Technological University 72 Babaria Institute of Technology

http://wiki.ros.org/rosbridge_suite
https://en.wikipedia.org/wiki/Machine_learning
https://numpy.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://opencv.org/about/
https://www.ros.org/
https://www.programiz.com/c-programming
http://wiki.ros.org/Quality/Tutorials/UnitTesting

Project ID - 208496

“ROS/Concepts - ROS.” 2014. ROS Wiki. http://wiki.ros.org/ROS/Concepts.

“roslibjs.” 2019. ROS Wiki. http://wiki.ros.org/roslibjs.

“rosserial.” 2018. ROS Wiki. http://wiki.ros.org/rosserial.

Sears, Addison. 2020. “How to Create a Publisher Node in ROS Noetic – Automatic

Addison.” Automatic Addison.

https://automaticaddison.com/how-to-create-a-publisher-node-in-ros-noetic/.

Sears, Addison. 2020. “How to Create a Service in ROS Noetic – Automatic Addison.”

Automatic Addison.

https://automaticaddison.com/how-to-create-a-service-in-ros-noetic/.

“uuid — UUID objects according to RFC 4122 — Python 3.10.4 documentation.” n.d.

Python Docs. Accessed April, 2022. https://docs.python.org/3/library/uuid.html.

Vankeirsbilck, Jens. 2020. “Introduction of Robot Operating Systems 2: ROS2 – SAFER

AUTONOMOUS SYSTEMS.” SAFER AUTONOMOUS SYSTEMS.

https://etn-sas.eu/2020/03/23/introduction-of-robot-operating-systems-2-ros2/.

van Rossum, Guido. n.d. “Python (programming language).” Wikipedia. Accessed April,

2022. https://en.wikipedia.org/wiki/Python_(programming_language).

Wastefull Insights. 2019. “Wastefull Insights | LinkedIn.” LinkedIn India.

https://in.linkedin.com/company/wasteful-insights.

“What is Build Tool? - Definition from Techopedia.” 2011. Techopedia.

https://www.techopedia.com/definition/16359/build-tool.

Y. Maruyama, S. Kato, and T. Azumi. 2016. Exploring the Performance of ROS2. N.p.: In

Proc. of ACM EMSOFT.

Gujarat Technological University 73 Babaria Institute of Technology

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/roslibjs
https://automaticaddison.com/how-to-create-a-publisher-node-in-ros-noetic/
https://automaticaddison.com/how-to-create-a-service-in-ros-noetic/
https://docs.python.org/3/library/uuid.html
https://etn-sas.eu/2020/03/23/introduction-of-robot-operating-systems-2-ros2/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://in.linkedin.com/company/wasteful-insights
https://www.techopedia.com/definition/16359/build-tool

