
1

ROB 550 BotLab Report
Trushant Adeshara, Ruben Orsolle, Federico Seghizzi

{trushant, rorsolle, seghizzi}@umich.edu

Abstract—The goal of the Botlab project is to modify
a provided codebase to control a 3 Degrees of Freedom
(DoF) differential-drive mobile robot to autonomously
move through a maze-like environment and detect and
lift tag-labelled blocks. To achieve this, several PID loops
were developed and tuned to control the motion of the
wheels and the robot’s ability to track a trajectory. To
localize the robot and guide its navigation, dead-reckoning
odometry was augmented with IMU readings, and com-
bined with a particle-filter-based Simultaneous Localization
and Mapping (SLAM) algorithm. This, combined with an
exploration algorithm, provided occupancy grids used by
an A* algorithm to generate trajectories to tag-labelled
blocks detected via computer vision algorithms. A custom-
designed forklift would then lift these and enable their
transportation to predetermined locations.

I. INTRODUCTION

The focus of the project lies in the development of an
autonomous navigation infrastructure for a differential-
drive mobile robot forklift. The robot’s servo-motors pro-
vide it with three DoF and feature magnetic incremental
encoders; the lidar instead provides a 2D scan of the
surrounding environment; the camera finally provides an
RGB image of the environment in front of the robot.

The autonomous navigation infrastructure should lo-
calize the robot in an unknown environment, au-
tonomously navigate through it to explore and generate
a map, and ultimately detect and navigate to tag-labeled
blocks without colliding with obstacles. These blocks
should then be transferred to their designated locations.

The implementation of the above behaviour can be
split into four key components:

1) Low- and High-Level PID motion control through
IMU-augmented odometry feedback.

2) Robot localization and environment mapping
through particle-filter-based SLAM.

3) Trajectory planning via A* and environment ex-
ploration via frontiers detection.

4) Block detection and retrieval via april-tag recog-
nition and forklift operation.

The different sections of the report will mirror this
conceptual subdivision.

II. METHODOLOGY

A. Augmented Odometry and Motion Control
The robot’s motion control consists of a high-level

trajectory tracking algorithm that relies on augmented

odometry to compute the forward and turning velocity
commands. These are then passed through the wheel
velocity controller that instead relies on the encoder
readings to generate a PWM signal for the motors.

1) Augmented Odometry: The robot can estimate its
position and consequently control its motion via simple
dead-reckoning odometry. This consists of estimating the
robot’s X − Y − θ by comparing the readings from the
encoder-derived velocity readings of the two wheels.

Preliminary results (Section III.A.1) revealed this
method to be inadequate at estimating the robot’s posi-
tion and bearing correctly, with the latter being particu-
larly problematic and causing error propagation through-
out system operation. Consequently, these encoder-based
readings were augmented with processed data from the
IMU. Specifically, the odometry-based orientation θ of
the bot was entirely replaced with the refined value
generated from the IMU without any modifications.

2) Motor Control: In order to control the body ve-
locity, we use two loops: a loop controlling the body
velocities v̂ and ω̂, estimated from the IMU-augmented
odometry; an inner loop controlling the wheel velocities
ω̂R/L obtained from the encoder. The conditional PID (or
Cond PID) is a normal PD with a conditional integrator:
this integrates only when the error is lower than 5%
of the final value. Subsequently, the overshoot and the
settling time are reduced while maintaining the static
error null. Parameters were manually tuned until no static
error (integral term) was present, whilst maintaining no
or low overshoot and settling time around 0.5s. These
are reported in Table I.

Fig. 1: Block Diagram of the Velocity Controllers

3) Trajectory Following: The implemented trajectory-
following algorithm is a Rotation-Translation-Rotation
(RTR) algorithm with PID control and capped output.

2

TABLE I: Parameters for the LP filter and PID con-
trollers.

Filter/Controller Parameters
K Ti

Low-Pass Filter 1.0 0.2
P I D

v 1.0 1.0 0
ω 1.0 1.0 0
vL/R 1.0 0.2 0

Considering the RTR algorithm first, for each point
this commands the bot to perform three motions:

1) Initial rotation of α to align with the direction of
the next waypoint.

2) Translation of ∆s to move from the current posi-
tion to the next waypoint;

3) Final rotation of ∆θ − α to align the robot with
the final waypoint’ specified bearing.

To control the turn and forward velocities through these
maneuvers, two proportional controllers were imple-
mented: one with Kp = 1 for the forward movement,
and one with Kp = 3 for the rotational movement.

To compensate for this simplistic control strategy, the
velocity output was restricted to be within application-
specific values. This prevented the output of excessively
large commands from the P-controller and enabled en-
forcement of a speed limit through operation.

B. Simultaneous Localization and Mapping (SLAM)

The proposed SLAM algorithm is shown in Figure 2.

Fig. 2: High-level overview of the SLAM algorithm.
Elements in blue relate to Mapping; Elements in red
relate to Localization.

1) Mapping: The mapping algorithm employed by
the robot builds a probabilistic occupancy map based
on the logOdds of each cell being occupied or empty.
Specifically, for each ray with a range lower than 5m
(i.e. for rays that bounce off an obstacle and do not
endlessly proceed into the void), the algorithm adds

7.5 to the logOdd value of the end cell, increasing
its likelihood of being occupied. The algorithm then
executes Bresenham’s algorithm to determine the cells
between the ray’s source and the end cell, and subtracts 2
from each logOdd, reducing their occupancy likelihood.

To determine the source cell and end cell, the algo-
rithm does need the robot’s location. Initially, this is
assumed to match the odometry’s estimated location to
create an initial map. Subsequently, the estimate from
the localization algorithm is used.

Additionally, since the robot moves whilst the ray
emitter spins, not all rays generated within a single
rotation originate at the same location. Furthermore, the
sensor readings are not processed at the same rate as
the odometry ones. To account for this, interpolation is
used to align all ray readings together with the odometry,
enabling the correct formation of the map from the scans.

2) Monte Carlo Localization via Particle Filtering:
Monte Carlo localization of the robot is achieved through
a particle filter [1] . This is initialized by generating a
specified number of equal-weighted particles either at a
known start position, or uniformly distributed in the en-
vironment. The particles represent potential locations of
the robot, with their weights indicating the likelihood of
representing the actual location. Following initialization,
the filter loops through the following steps:

a) Resampling: Via low-variance resampling [1].
b) Motion Propagation via Action Model: The

model employed is an RTR model matching that de-
scribed in Section II.A.3. To capture uncertainty in the
motion performed, noise from a zero-meaned normal dis-
tribution is added to the RTR motion variables. Equation
1 encapsulates how the action model updates position
estimates.xt+1

yt+1

θt+1

 =

xt

yt
θt

+
(∆s+ ϵ2) · c(∆θt + ϵ1 + α)
(∆s+ ϵ2) · s(∆θt + ϵ1 + α)

∆θt + ϵ1 + ϵ3

 (1)

The values ϵ1, ϵ2, and ϵ3 are obtained via Equation 2.ϵ1ϵ2
ϵ3

 ∼

 N (0, k1|α|)
N (0, k2|∆θ|)

N (0, k1|∆θ − α|)

 (2)

The values of the uncertainty parameters were deter-
mined by varying both k1 and k1 were varied between
0.01 and 0.05 in increments of 0.01. Each possible
combination of values was evaluated by commanding the
robot to perform a simple 1mx1m L-shaped motion. The
selected values of k1 = 0.01 and k2 = 0.3 guaranteed a
consistent distribution of particles that did not converge
nor diverge excessively throughout the entire motion.
This was measured by the maximum particle spread,
defined as the maximum distance between two particles
in the distribution.

3

c) Weight Update via Sensor Model: The weights
of the propagated particles are updated via the sensor
model to reflect the likelihood of being at the parti-
cle’s pose given the lidar’s reading and current map.
Specifically, the weight is determined from the sum of
each ray’s score, assuming that the rays originate at the
particle’s position. Each ray is scored as follows:

• score = 0 if the ray’s range is greater than 5m. This
ensures that rays that do not intersect any obstacles
and endlessly proceed into the void are not used for
weighting the particle;

• score = 0.1 if the ray’s end cell on the last-updated
map is believed to be free;

• score = 0.5 if the ray’s end cell on the last-updated
map is believed to be occupied.

The weights of all the particles are finally normalized.
d) Pose Estimation: The re-weighted particles are

used to estimate the robot’s X − Y − θ by computing
the weighted average the top 25% of particles’ poses.

C. Planning and Exploration

1) Path Planning: Path planning through the SLAM-
generated map is achieved via an A* algorithm, selected
due to its good balance between efficient computation
and optimal path generation. It achieves this by com-
bining the cost functions of Dijkstra’s Algorithm and
Greedy Breadth-First Search. The former’s cost, termed
g cost, represents the ”distance” from the start to the
current node; the latter’s cost, termed h cost, represents
the distance from the current node to the goal. The
two are defined in Equations 3 and 4. The last term of
Equation 3 was added to account for the distance from
the child node to the nearest obstacle after preliminary
results reported in Section III.C.I showed the planner
generating trajectories excessively close to obstacles.

g(child) = g(parent) + 1− dist(child;map) (3)

h(xs, xg, ys, yg) = dx+dy+(
√
2−2)min(dx, dy) (4)

2) Exploration: The exploration algorithm is de-
signed to move the robot to frontier regions of the map
until none remain and the environment is fully captured.

Considering frontiers detection, this is performed after
every map update via a connected-components search.
Specifically, when a map cell has a neutral logOdd value
of 0 but one or more of its neighbors do not, this is
marked as a frontier cell; connected cells sharing this
property are then gathered to form a single frontier.

The algorithm then loops through the list of frontiers
to detect the closest one. The path planner described
above is then used to generate a safe path in proximity
to the frontier’s start cell. As the robot approaches the
frontier, the lidar data is automatically fed through the

mapping algorithm to update the map and close the spe-
cific frontier under evaluation. When no frontiers remain,
the exploration algorithm will automatically return the
robot to its start location.

D. Forklift Operation

1) Forklift Design: Two forklift designs were de-
veloped. The first, shown in Figure 3 employs a rack
and pinion mechanism driven by two Dynamixel XL320
servo motors. The use of primarily laser-cut components
(only the motor holders were 3D printed) resulted in
a rapidly manufacturable design; the reduced weight of
the components enabled fast pallet picking and stacking,
even at a distance.

Fig. 3: Rack and Pinion Based Forklift Design

The second design, shown in Figure 4, consists of a
compact linear gantry operated by a single Dynamixel
XL320 servo motor. This relied on a 2020 aluminum
extrusion as a guide for v-wheels moved by a GT2 belt.
This design, though heavier, is sturdier and offered a su-
perior control resolution, whilst also improving stability
throughout motion thanks to the presence of a counter-
castor wheel.

Fig. 4: V-Slot Gantry Based Forklift Design

4

2) Pallet Detection and Retrieval: Pallets, as shown
in Figure 5, feature nested April tags on all sides, with
odd ID tags located on the sides where the forklift
openings are. The outer tags have an ID that is 10 times
the smaller nested tags. These are used to establish a
reliability zone: a zone where both small and large April
tags are detected which ensures reliable and accurate
depth estimation. This zone is used to prevent the robot
from colliding with pallets.

Fig. 5: Pallet Configuration

To locate and retrieve the pallets, two new LCM
channels are introduced for the camera and forklift. In
fully autonomous mode, the robot captures an image
every 0.1 seconds to detect the presence of a pallet in
the environment. Upon sensing the pallet, the reliability
zone is assessed, and PnP extrinsics are calculated to
determine the homogeneous transformation used to guide
the robot to a retrieval position.

This is specified via at least two waypoints to locate
the robot within 0.2m in front of the pallet insertion
region. Once aligned, the bot moves forward until the
large April tag detection is lost, triggering the forklift
subroutine. This features hard-coded motor settings to
ensure the forks are elevated or lowered as appropriate.

III. RESULTS

A. Augmented Odometry and Motion Control

1) Augmented Odometry: To evaluate the perfor-
mance of the augmented odometry, the robot was com-
manded to drive a 1m square at increasing translational
and rotational speeds: 0.1m/s and π/2 rad/s; 0.5m/s and
π rad/s; 1m/s and 2π rad/s. The average position and
orientation errors from the IMU-augmented odometry
are compared to the errors from the encoder-based
odometry. Results are reported in Figure 6.

2) Motor Calibration and Control: Prior to evaluating
the motor controller’s performance, a mapping needs
to be established between the PWM signals it would
originate, and the wheel velocities produced. This is
achieved through calibration whilst assuming an affine

Fig. 6: Average position and orientation errors across
different speeds for the augmented and unmodified
odometry. Error bars represent the standard deviation.

relationship for this mapping in both the positive and
negative domains, although the fits in the two may differ.
Table II gathers the fundamental calibration data.

Parameters Mean Std Dev
Positive Slope 1 6.7e-2 3.4e-3
Positive Slope 2 7.2e-2 3.4e-3

Positive Intercept 1 6.6e-2 4.1e-3
Positive Intercept 2 5.6e-2 6.5e-3
Negative Slope 1 7.2e-2 3.4e-3
Negative Slope 2 6.5e-2 3.5e-3

Negative Intercept 1 -5.8e-2 4.2e-3
Negative Intercept 2 -7.0e-2 5.0e-3

TABLE II: Motor Calibration Data

Considering the motor controller, this is evaluated
by commanding step inputs for both linear velocity v
and angular velocity ω. The responses are illustrated in
Figures 7 and 8. Time-wise, the controller successfully
settles at the specified commands within 1% of the
commanded value in 0.5 seconds.

3) Trajectory Following: To evaluate the ability of the
robot to track a trajectory accurately, it was commanded
to drive a 1m square for 4 times both clockwise and
counter-clockwise at the speeds reported in Section
III.A.1. The robot’s location through the process is
compared against the ground truth and visualized in
Figure 9. The commanded velocities associated with the
trajectory are presented in Figure 10.

B. Simultaneous Localization and Mapping (SLAM)

1) Mapping: To evaluate the performance of the map-
ping algorithm, the robot was fed simulated lidar data to
generate a map of two separate application-relevant envi-
ronments. To prevent faults in the localization algorithm

5

Fig. 7: Performances for ω. Rows: negative/positive
inputs; Columns: low/high magnitude.

Fig. 8: Performances for v. Rows: negative/positive
inputs; Columns: low/high magnitude.

from altering the results, the ground-truth data was used
during this experiment. Given the evident difficulties in
comparing the produced maps against their ground truth
counterparts quantitatively, these are instead compared
qualitatively in Figure 11.

2) Monte Carlo Localization: Two aspects were con-
sidered when evaluating the particle filter’s performance.

Firstly, the filter’s update rate had to be evaluated to
ensure that it was sufficiently high to meet the applica-
tion requirements of 10Hz. To test this, the filter was run
with 100, 300, 500, and 1000 particles in two different
simulated environments of increasing complexity. To
prevent faults in the mapping algorithm from altering
the results, the ground truth map was used in this
experiment. Performance is reported in Table III.

Averaging the results for each test across environments
and plotting frequency against particle number, the rela-
tion between the two was found to follow a power curve.

Fig. 9: Augmented-Odometry pose estimate over four
loops at varying velocities.

TABLE III: Particle filter update rate for environments
of increasing complexity and particle number (prts).

Map 100 prts 300 prts 500 prts 1000 prts
Simple ∼ 830 Hz ∼ 280 Hz ∼ 170 Hz ∼ 90 Hz

Complex ∼ 770 Hz ∼ 270 Hz ∼ 170 Hz ∼ 90 Hz

Based on it, the system can be estimated to support up
to 10000 particles when running at the required 10Hz
for the considered application.

Secondly, the particle’s behavior throughout the mo-
tion had to be monitored to ensure that the uncer-
tainty parameters were effectively tuned. To achieve this,
the robot was moved through the same two simulated
environments (once again using ground truth maps),
whilst measuring 300 particles’ spread (i.e. the maximum
distance between any two particles). Results are reported
in Table IV, with Figure 12 visualizing data for one of
the complex environments.

TABLE IV: 300 Particles’ Spread Statistics

Map Mean Max Min St. Dev.
Simple 17.7 mm 26.4 mm 0.0 mm 3.4 mm

Complex 19.2 mm 32.5 mm 0.0 mm 3.9 mm

3) Combined Implementation: The overall perfor-
mance of the SLAM system was evaluated by running
the algorithm with 300 particles on the same two sim-
ulated environments, albeit without providing ground
truth maps or poses. Statistics for the error between the
estimated pose and the ground-truth pose are reported
in Table V. A visual comparison of the two, and of the
produced maps against the ground truth map is produced
in Figure 13 for the most complex map considered.

6

Fig. 10: Commanded and actual velocities for: A 0.1m/s and π/2 rad/s; B 0.5m/s and π rad/s; C 1m/s and 2π rad/s.

Fig. 11: Comparison of the algorithm-generated map
with the ground truth map (yellow overlay) for: A low-;
B high-complexity environments.

Fig. 12: Particle spread evolution for every 5s of opera-
tion. The semi-transparent path and map are overlaid.

C. Planning and Exploration

1) Path Planning: Several evaluations were per-
formed to assess the implemented path planner’s per-
formance. Firstly, to address the safety of the path
generated, the algorithm was run in four simulated

TABLE V: Error between the SLAM-derived and ground
truth pose. Values for position (rows 1 and 2) are
separated from those for orientation (rows 3 and 4).

Map RMS Max Min St. Dev.
Simple 94.3 mm 186.8 mm 0.0 mm 42.5 mm

Complex 128.4 mm 251.9 mm 0.0 mm 53.3 mm
Simple 5.7 deg 12.8 deg 0.0 deg 2.7 deg

Complex 6.3 deg 10.7 deg 0.0 deg 2.5 deg

Fig. 13: Comparison of SLAM-estimated map and tra-
jectory against the ground truth (yellow-red overlay).

environments of increasing complexity, with and without
the obstacle proximity term of Equation 3. The minimum
distance between the generated trajectory and the map’s
obstacles is reported in Table VI.

Secondly, the efficiency of the algorithm implementa-
tion is rigorously evaluated through a series of planning
tests in the same four environments considered above,
whilst tracking the associated computational efficiency.
Statistics for this evaluation are reported in Table VII.

7

TABLE VI: Minimum distance between the generated
path and the map’s obstacles.

Test w/o Penalization w/ Penalization
Convex 5.2cm 7.3cm
Maze 4.4cm 6.9cm

Narrow constr. 4.8cm 7.7cm
Wide constr. 6.8cm 12.5cm

TABLE VII: A* performances in the different test envi-
ronments. All values in µs.

Test Min Mean Max Median Std dev
Convex 46 72.5 99 70.5 26.5
Maze 726 27959 68626 8818 26431

Narrow constr. 3004 3621 4146 3713 470
Wide constr. 3205 3510 3727 3727 221

Finally, the viability of the generated trajectory was
evaluated by running the A* algorithm in a real-life
environment on the actual robot. A comparison between
the planned trajectory and the executed one is reported
in Figure 14.

Fig. 14: Comparison of the A*-generated trajectory
(green) against the robot’s performed one (blue).

2) Exploration: Since the exploration algorithm heav-
ily relies on the algorithms described above, instead
of analyzing the quality of the exploration (dependent
on the mapping algorithm and captured in Section
III.B.1), this section will exclusively report its success
rate. Specifically, the system was run ten times in the
two simulated environments considered for the SLAM
evaluation. Exploration was successful 70% of the time
in the low-complexity environment and 40% in the
high-complexity environment. The main failure modes
were the system’s inability to return home within the
designated tolerance, and its inability to complete the
exploration due to faults in the state machine.

D. Forklift Operation

Several aspects were considered to evaluate the per-
formance of the developed forklifts and the associated

code. Firstly, the algorithm’s ability to detect the tags
was evaluated. This was achieved by recording when
the small and large tags would be detected. Throughout
this assessment, the robot was driven in straight lines
from a distance of 5m from the block, with the lines
diverging from the block’s normal at 0deg, 15deg, 45deg,
and 60deg. Reliable detection ranges for the small and
large April tags were found to be 0.1 m to 0.6 m and
0.2 m to 5 m, respectively. The reliability zone was thus
set to be between 0.2 m and 0.6m, with the lower limit
set to account for the fork’s length.

Secondly, the system’s ability to autonomously pick
up blocks was evaluated. This was achieved by placing
the robot at a 0.5m distance from the pallet along the
same directions reported above and testing the block-
retrieval subroutine. Whilst the robot moved to the
correct retrieval location without fault, it was noticed
that both designs did not elevate the block sufficiently
to enable stacking, due to a lack of stiffness in the forks
which caused them to sag under the pallets’ weight.
This was found to occur in 5 of the attempted 7 trials
performed for each design.

Considering the operation of the specific designs, the
rack and pinion one was found to be fast but jittery,
sometimes shaking the pallet slightly forward in an
unsecured position. Additionally, the two motors could
sometimes go out of sync, causing the forks to move at
an angle. As for the gantry-based design, this was found
to be significantly smoother to operate, without facing
any of the issues of its simpler counterpart.

E. Competition Performance

The competition provided an opportunity to evaluate
the performance of the system holistically. Table VIII
reports performance for each task, with the ”Success %”
metric being based out of 10 attempts.

TABLE VIII: Competition Performance Summary

Task Autonomy Success % Main Limiting Factor
1 Full 70% Home-Return Issues
2 None 70% Forklift Design
3 Full 20% Home-Return Issues
4 None 20% Forklift Design

IV. DISCUSSION

A. Odometry and Motion Control

Considering firstly the IMU-augmented odometry, this
appears to tangibly improve on the simple encoder-
based odometry only at high speeds, suggesting that the
implemented modifications could be further improved
upon, with potential benefits for the entire architecture.

Addressing secondly the variation in the calibration
data, data in Table II indicates that the standard deviation

8

falls within the range of 5% to 10% of the mean value.
This variation could stem from multiple factors:

• Possible inherent noise in motor velocity measure-
ments introduced by the encoders;

• Possible variations in the ground surface might
cause wheel slippage during calibration;

• Variations in how undercarriage wires rest on the
ground, altering friction.

Irrespective of the above, the data variation is small
enough to be considered acceptable.

The performance of the wheel controllers also appears
adequate, guaranteeing very low settling time, overshoot,
and steady-state errors.

As for the performance of the trajectory tracking
algorithm, data in Figures 9 and 10 suggests that this per-
forms as desired only at low velocities, with performance
tangibly deteriorating as the motion speed increases.
Given the results gathered for the augmented odometry,
it is likely that this behavior results from the sub-optimal
performance of this estimation.

B. Simultaneous Localization and Mapping (SLAM)

The implemented SLAM system appears highly ca-
pable of generating environment maps, as visualized in
Figures 11 and 13. The latter however also highlights
non-negligible errors in the localization-derived pose
estimate, confirmed by the data reported in Table V.

The most likely explanation for the above can be
inferred from Figure 12, where the particles remain too
clustered together and do not adequately capture motion-
and measurement-derived uncertainty, preventing better
estimates. Given the extremely streamlined measurement
model used, increasing the number of particles could be
a viable option to alleviate this issue without sacrificing
performance, as inferred from Table III. More effectively
perhaps, a more sophisticated measurement model could
yield better estimates. In both cases, the action model
could also be re-tuned to enable greater particle spread.

Irrespective of this limitation, the system’s perfor-
mance appears acceptable, with the maximum error from
Table V being at most a third of the smallest dimension
of the space the robot is navigating, and the RMS value
being only slightly larger than the robot’s base radius.

C. Planning and Exploration

The developed planning algorithm is shown to work
efficiently whilst generating viable trajectories that the
physical robot can follow. It does not however appear
to generate sufficiently safe trajectories: given the error
associated with the SLAM-derived localization, the gen-
erated paths should feature much larger distances from
obstacles than those reported in Table VI.

The planning algorithm’s performance also appears
to be sub-optimal. The second failure mode recorded
indicates that the state-machine’s implementation needs
improvements to account for edge cases that cause the
robot to stop exploring. The first instead is a consequence
of the shortcomings of the A* algorithm.

D. Forklift

The main fault in both proposed designs lies in the
sagging of the forks due to the use of an insufficiently
stiff material. This could be overcome by either in-
creasing the height of the racks or guide extrusions or
employing a stiffer material.

Considering the operation of the forklift, meaningful
difficulties were encountered in integrating their logic
within the system’s autonomous control algorithm.

E. Competition Performance

The system was capable of tackling all competition
tasks at least once, albeit with some limitations. Specif-
ically, in navigation-focused tasks 1 and 3, the system
was not capable of reliably returning to its start pose
within the designated tolerance. Considering the data
reported in Section III.A and III.B, this is likely caused
by the combined effects of insufficiently precise SLAM
and augmented odometry, rather than by issues in the
trajectory controller or path planner. In the case of task
3, these problems were aggravated by issues within the
exploration state machine, which would frequently fail.

In the forklift-focused tasks 2 and 4, the robot encoun-
tered issues in recovering blocks autonomously. This is
mostly due to improper integration of the autonomy logic
within the overall system, something that could only be
overcome by performing the tasks in teleoperated mode.
A future solution could be the development of a dedi-
cated state machine to manage the transition between dif-
ferent actions more reliably. Additionally, performance
was affected by the design issues documented in Section
III.D, which prevented reliable block stacking.

V. CONCLUSION

The system overall appears well versed in tackling all
tasks required, albeit highly unreliable. Iimprovements
are required in the IMU-augmented odometry, localiza-
tion, and forklift design and autonomy integration to
tangibly augment the systems’ performance.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The
MIT Press, 2006. [Online]. Available: http://www.probabilistic-
robotics.org/

[2] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control. Wiley, 2005. [Online]. Available:
https://books.google.com/books?id=wGapQAAACAAJ

