
1

ROB 550 Armlab Report
Trushant Adeshara, Dhyey Manish Rajani, Mujtaba Khan Mohammed

{trushant, drajani, khataba}@umich.edu

Abstract—In this research report, we explore the ap-
plication of robotic manipulators in conjunction with an
RGB-D camera for precise object manipulation within a
specified workspace. Our study focuses on the utilization
of the Interbotix RX200 Arm in combination with the
Intelrealsense L515 LiDAR. We provide a comprehensive
overview of our software stack development, elucidating the
decision-making process that guided our implementation.
We touch up on topics including camera calibration,
projective transformation, block detection, forward and
inverse kinematics.

I. INTRODUCTION

This report introduces the automation of a 5-DoF
robotic arm, designed for the purpose of efficiently exe-
cuting stacking and sorting tasks that involve variously
sized and colored blocks. The RX200 robot arm facili-
tates the actuation, while the RealSense LiDAR camera
serves as the sensing component. Homogeneous transfor-
mations play a pivotal role in converting pixel and depth
coordinates into real-world coordinates, determining the
precise location of the blocks for operational purposes.
Additionally, fiducials are incorporated for accurate pose
estimation.

The control of the robotic arm within the workspace is
achieved through the integration of both Forward Kine-
matics and Inverse Kinematics. These methodologies
ensure the precise regulation of the robotic arm to the
desired positions, enhancing its efficiency in performing
the specified tasks.

II. METHODOLOGY

A. Camera Calibration

Every camera requires a calibrated factory matrix
specific to its make, that is used as an intrinsic matrix
for perspective transformations, as outlined in equation
(1). uv

1

 =
1

ZC

α s u0

0 β v0

0 0 1

[
I|0

]
Xc

Yc

Zc

1

 (1)

It transforms image from camera frame to image(sensor)
frame. This factory intrinsic matrix proves reliable for

computations,as they were calibrated using an ample
dataset.

Kfactory =

904.571 0 635.981

0 905.295 353.06

0 0 1

 (2)

However, variations in environmental factors, such as
different lighting conditions or lens aging, can disturb
the camera’s performance with the factory-calibrated
matrix. In such cases, users have the option to re-
calibrate the intrinsic matrix, tailoring it to their unique
usage scenario. Our calibration process involved three
learning trials using a checkerboard and the ROS camera
calibration package.

Kavg =

930.563 0 629.029

0 933.571 368.777

0 0 1

 (3)

The data samples for size and skew were different in
every trial, which resulted in minute differences among
them, but comparing the average of the user calibrated
intrinsic matrix from the factory calibrated intrinsic
matrix, there were some slight changes. We decided to
use given intrinsic matrix since it was extracted using
a geometric camera calibration process which is more
accurate than single checkerboard calibration.

B. Workspace Reconstruction

One of the important aspect of workspace reconstruc-
tion is to go from image coordinates to world coordinates
and vice versa. Since, the intrinsics are sorted, the next
step is to transform these camera coordinates into world
coordinates, as outlined in following equation:

Xc

Yc

Zc

1

 =

[
R T

0 0 0 1

]
Xw

Yw

Zw

1

 (4)

To achieve this, we must compute an extrinsic matrix,
which serves as a homogeneous transform matrix, en-
capsulating the rotation and translation components.

1) Manual Calibration: Our first approach was to
manually calculate transformation between the world
frame and the camera frame. Our world frame origin
was at the base of the robotic arm and the origin for the



2

camera frame was as close to the centre of the camera
lens as possible.Initially, we focused on understanding
the rotation between the frames, given their parallel
orientation and the z-axis pointing toward each other,
indicating a 180-degree rotation in either the x or y
axis. In our case, the rotation occurred along the x-
axis. Now with that information, it is fairly straight-
forward to calculate the rotation matrix. For translation,
we measured the distances between the origins in all the
three axes using a measuring tape, which then gave us
the extrinsic matrix as shown in equation below:

Hmanual =


1 0 0 28

0 −1 0 182

0 0 −1 1004.2

0 0 0 1

 (5)

However, this method was a rough estimate, resulting
in coordinate conversion with discrepancies of around
+/- 20 mm. We addressed this by manually calibrating
the translation values to bring them closer to actual.
Nevertheless, the error rate increased with changes in
the depth frame.

2) AprilTags Calibration: Apriltags[1] serve as a
widely employed fiducial system in computer vision for
calibrating the pose of a system. In our setup, we utilized
a total of 4 apriltags.

Fig. 1. All 4 apriltags are detected for calibration using ROS

Calibration involved the use of the Perspective and
Point (PnP) [2] method, facilitated by the apriltag ROS
package. The initial step was to employ apriltag detec-
tion to obtain tag coordinates, and the retrieved values
proved to be close to accurate. The PnP working requires
the inputs of the coordinates of the apriltags acquired
from apriltag detection and also their known world frame
coordinates. This would give us the extrinsic matrix(6)
that will be again used for better than manual perspective
transform.

Hcal =


0.999 −0.035 0 4.482

−0.034 −0.992 0.118 167

−0.015 −0.118 −0.992 987.356

0 0 0 1


(6)

Our initial assumption that the rotation matrix solely
involved a 180-degree rotation along the x-axis proved
incorrect. In reality, there was a slight rotation along
the y-axis as well. Furthermore, the manually calculated
translation exhibited considerable errors when compared
to the translation values derived through the PnP cali-
bration matrix.

C. AprilTags Homography
One another import usage of AprilTags in our case

scenario was to get birds-eye view of the workspace
using Homography [3] which is a 8-DoF transform. In
order to perform homography we require source points
from the base image and destination points of the desired
image.

Fig. 2. Image before Homography Transformation

Fig. 3. Bird’s eye view after Homography Transformation

D. Block Detection
Our approach for Block Detection includes two steps:

Finding contours and deciding color of the block.
Pseudo Algorithm for Block Detection is as Follow:
1) Pre-process depth image with a Gaussian filter of

size 5× 5.
2) Segment the depth image for contour detection

using average thresholding.
3) Find all the contours in segmented depth.
4) For each detected contours we use corresponding

HSV image for color classification based on preset
range in labels.[4]



3

5) For the detected contours, we calculated moments
which aided in extracting the area of the detected
contour.[5]

6) Lastly, a minimum area rectangle was calculated
around the detected contours which will provide
dimension of blocks to be picked.

If the area(contour) > 300, we would check it if either
it is a square, rectangle, parallelogram or circle.

Since the robot is also in the workspace, we used a
bitwise mask to permanently remove area around robot
and HSV range of color provides an add on safety that
robot won’t be detected while performing tasks. This can
be seen as blue outline in fig. 3.

Output of the block detection algorithm is shown
in fig. 4 which can efficiently detect large blocks of
different colors along with their orientation which will
be used by robotic arm for grasping by aligning end-
effector.

Fig. 4. Block Detector with Orientation.

E. Forward Kinematic Solution

Forward Kinematics (FK) involves utilizing a robot’s
kinematic equations to determine the position and orien-
tation of the end effector in the world coordinate system,
using specified joint parameter values. This process is
analytical, with a closed-form solution and a unique
result. The primary objective of FK is to ascertain
the global frame positions of the joints based on the
individual joint positions within the robot’s frame [6].

In this project, we have employed the Denavit-
Hartenberg parameters (DH parameters), as a standard
set of parameters to describe the consecutive joint spe-
cific transformation matrices of the robotic manipulator.
DH convention needs only 4 parameters by careful frmae
choice. These parameters are:

Fig. 5. RX200 arm schematic [7] with assigned frame annotations for
DH parameters calculation.

• Joint Angle (θ): Represents the angle of rotation of
the current joint about its z-axis to align the current
(old) joint’s x-axis with the new joint’s x-axis.

• Joint Offset (d): Represents the offset along the
previous joint’s z-axis to reach the common normal
(line aligned with the z-axes of the joint coordinate
systems, used to establish a consistent frame of ref-
erence for defining the DH parameter). It describes
the displacement from the previous joint’s origin to
the new joint’s origin along the common z-axis.

• Link Length (a): Represents the displacement along
the common x-axis from the old joint’s origin to the
new joint’s origin. It describes how the joint moves
along the x-axis to align the coordinate systems
between the two joints.

• Link Twist (α): Represents angle about the the x-
axis to align from the old joint’s z-axis to the new
joint’s z-axis. It defines the joint axis orientation
relative to the common normal.

As seen in the Fig. 5, all the arm joints are assigned
frames systematically taking into account the axis con-
ventions. Each joint i connects i-1th link to ith link.
Based upon the robot axis directions we first assign the
corresponding z-axis to all the joints. Subsequently, to
assign x-axis to each ith joint we keep in mind that axis
xi is perpendicular to and intersects with axis zi−1. For
each joint we first observe rotation along the current z-
axis (θ) for x-axis alignment; followed by translation
along the current z-axis (d) i.e., in direction of common
normal connecting the origins of current and subsequent
joints along z-axis; translation along current x-axis (a);
and finally rotation along current x-axis (α) for z-axis
alignment. The sequence of which is shown in Eq.7, to
create a joint specific transformation matrix, Eq.8 :

Ti = Rotz,θi · Transz,di · Transx,ai · Rotx,αi (7)



4

=


cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1



=


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


(8)

Furthermore, the complete FK equation for the robotic
manipulator is assembled from individual joint homoge-
neous transformations, as shown below in Eq.9:

The complete FK equation for the robotic manipulator
is assembled from each joint homogeneous transforma-
tions, shown in Eq.9:

Toverall = T1(joint1) · · · · · Tn(jointn) =

[
Rot0n Loc0n
0 1

]
(9)

Now once all the joint configuration parameters and
coordinate frames are in place, as shown in Fig. 5, we
fill up the DH parameter table (Table I) for our robotic
manipulator using the joint specific convention sequence
specified by Eq.7.

TABLE I
DH PARAMETERS FOR MANIPULATOR IN FIG. 5

Joint θi (rad) di (mm) ai (mm) αi (rad)
0 π

2 103.91 0 −π
2

1 − arctan(4) 0 205.73 0
2 arctan(4) 0 200 0
3 −π

2 0 0 −π
2

4 0 174.15 0 0

As seen in Fig. 5, in going from joint 1 to joint 2 of the
robot arm we construct a unique shortest line segment
from origin of z1 to z2 in order to determine the inclined
direction of x2 axis. To determine the exact inclination
we use the trigonometric calculation shown in the sub-
figure. Furthermore, we also consider the joint 4 to be at
the end effector position by considering the total distance
of 174.15 mm instead of mere 65 mm distance. This
helps us to reduce rows in the DH table.

F. Inverse Kinematic Solution

Fig. 6. RX200 arm shoulder to wrist joint skeletonized diagram.

Inverse kinematics (IK) is the mathematical process
of calculating the variable joint parameters needed to
place the end effector of robot manipulator in a given
position and orientation (i.e., pose = (x,y,z,ϕ, θ, ψ)) rel-
ative to the start of the kinematic chain [8]. IK has
closed form solution and non-unique solution exists [6].

Fig. 7. θ0 top view

Here, we observe IK as a root
finding problem by solving a
system of non-linear equations
obtained from the FK transfor-
mation matrix. Following the
RX200 arm schema as given in
Fig. 5, we first calculate the base
joint angle (θ0) as, (refer Fig. 7
and Fig. 5)

θ0 = arctan(−x, y) (10)

In our case, smaller allied angle is taken, but θ0 =
arctan(−x, y) + π is also a possible joint angle.

Subsequently, we compute the WristR joint angle, θ4,
which is used to align the gripper with block orientation
(γblock) during vertical grasp/release, such that

θ4 = θ0 − γblock;whereγblock ∈ [0, π/2] (11)

After, computing θ0 and θ4, we find the shoulder (θ1),
elbow (θ2) and WristA (θ3) joint angles simultaneously,
by solving the 2 link RR manipulator IK sub-problem as
illustrated in the Fig. 6. Here, we project the 3D frame
coordinates of the manipulator to a 2D plane i.e., x-y
coordinate frames. Then we compute the FK solution
of the manipulator. The sequence of frame traversals to
go from shoulder coordinate frame to wristA coordinate
frame, based on Fig. 6 are as follows:



5

T = Rz,θ1 · tx,l1 · Rz,θ2 · tx,l2 · Rz,θ3 · tx,l3 (12)

Here, Rz,θi and tx,li signify the 2D rotation and trans-
lation about the corresponding current frame axis. The
link lengths, l1, l2 & l3 are 205.73, 200 & 174.15 mm
respectively. In Fig. 6 we can see that we traverse along
the unique shortest line segment from shoulder to elbow
joint. Hence,

θ1 = θ1 + arctan(50/200) (13)

After substituting all the manipulator data in the
frame traversal equation (Eq.12) and multiplying all the
homogeneous matrices, we get the overall transformation
matrix (T) as follows:

T =

cos1−2−3 sin1−2−3 f2

sin3−1+2 cos3+1−2 f3

0 0 1

 (14)

f2 = (174.15 ∗ cos1−2−3) + (200 ∗ cos1−2)

+ (205.73 ∗ cos1)
f3 = (174.15 ∗ sin2−1+3) + (200 ∗ sin2−1)

− (205.73 ∗ sin1)

Note in the above equations we have used a compressed
form of writing the equation due to space constraints.
For instance, ”cos1−2−3” means cos(θ1 − θ2 − θ3).

Finally, along with f2,f3 we also solve for f1,

f1 = θ1 + θ2 + θ3

Now, by equating f1,f2 & f3 with zero,

f1− π

2
= 0 (15)

103.91 + f2− z = 0 (16)

f3−
√
(x2 + y2) = 0 (17)

we formulate IK as a system of nonlinear equations
in the ”equ” (equation) function in ”kinematics.py”,
which after setting base and wristR joint angles in
”IK geometric” function is being called to acquire the
remaining joint angles. The numerical IK optimization
problem is ”equ” function is solved by using scipy’s
fsolve library.

In Eq.16 we add 103.91mm, the link length from base
to shoulder, to f2 since the FK equations are with respect
to Fig. 6, where the the kinematic chain starts from elbow
which is 103.91mm above the base. Also, 3D frames are
projected to 2D frames, the rotation components of frame
change are taken care of by the x-y coordinates, but in

reality the translation from elbow to end effector takes
place in 3D i.e., perpendicular to the x-y rotation frames,
hence we use z position and resultant vector of x-y
positions to keep our optimization problem directionally
constrained and accurate corresponding to the 3D world
coordinates.

G. Path Planning

We employ the RX200 robotic manipulator for a
variety of tasks, including Teach & Repeat, Click-to-
grab/drop for safe manipulator operation.

1) Teach and Repeat: Teach and repeat is a widely
used method for instructing robotic arms in performing
repetitive tasks, offering a user-friendly approach without
specialized expertise. This approach involves creating
a system that accepts a series of distinct waypoints in
joint space and directs the robotic arm to traverse the
trajectory connecting these waypoints [6].

To initialize the ”Teach” part of the task, the ”Record
Position” custom button is pressed to start recording the
waypoints by appending them in a list in the ”record”
function in ”state machine.py”. Along with recording
the positions of manipulator using the RXArm class’
”get positions” method in the ”record” function, the
type of actions are also classified, i.e., when the grip-
per is open or closed (recorded using ”Record Open
Gripper” and ”Record Close Gripper” custom buttons
respectively) or recording. During the manual movement
of the manipulator, to record the waypoints, the ”Record
Waypoint”/”Record Open Gripper” or ”Record Close
Gripper” buttons are pressed repeatedly at different po-
sitions, based on the type of tasks, in order to store the
arm positions as waypoints.

Now, to initialize the ”Repeat” part of the task, the pre-
existing ”Execute” button is pressed, to repeat the stored
actions of the ”Teach” cycle. The ”execute” function
found within the ”state machine.py” iterates through the
recorded list of waypoints. It utilizes the RXArm class’
”set positions” method to guide the manipulator from
its current joint configuration to a specified waypoint
configuration. This movement is executed with a sleep
time of 1 second. In scenarios where solely the initial and
final waypoints are provided, we generate intermediary
waypoints to ensure seamless and consistent trajectory,
corresponding to the intended motion.

2) Click To Grab/Drop: To shift the blocks within
the reachable workspace we implement the Click To
Grab/Drop strategy within the ”click operation” function
in ”control station.py”. The algorithm is as follows:

• Initialization: Initialize the robot arm to its home
position and enable camera calibration.

• Recording Mouse Click Positions: In the setup
phase, the code records the current mouse position



6

(pt) with ”mouse eventṗos()” in pixel coordinates.
It then updates last click array with the x and y
coordinates of the click, preserving the click loca-
tion. The ”click status” variable is also increased,
to keep track of the number of clicks in the click-
and-place process.

• Getting Depth Information: Retrieve the depth in-
formation z, in camera coordinates, at the clicked
pixel position from the camera’s raw depth frame.

• Converting Pixel Coordinates to World Coordinates:
If the depth information is available (depth frame
is not all zeros): We first convert pixel coordinates
(pt) to homogeneous coordinates (pt loc old). If a
birds-eye homography matrix is available, we apply
it; otherwise, set current point coordinates (pt loc)
to recorded coordinates (pt loc old). Further, we
calculate the z coordinate of pt loc by retrieving
corresponding depth value from the depth frame and
find 3D world coordinates using camera matrices.

• Inverse Kinematics: Using the 3d world coordinates
of click position, we will compute the end effector
pose. We compute ϕ (by using the sum of inverse
tangent of x over y world coordinate and block
orientation from block detector) to pick the block in
the current configuration; we keep θ and ψ as zero
and π radians (for points beyond thresholded area of
world frame and π

2 radians elsewhere) respectively.
Next we calculate the joint angles by applying pose
to inverse kinematics function (”IK geometric”)
and use RXArm class’ ”set positions” method to
set the robot arm’s positions to reach the calculated
joint angles, ultimately reaching the desired click
positions.

• Pick-and-Place: Based on the ”click status” we
determine the operation mode. If the click status is
odd, the arm performs the ”pick” operation, wherein
after adjusting the pose by lowering the end effector
depth (z -= 200mm) and setting the desired height
(z = 30mm), the ”grasp()” method from RXArm
class’ ”gripper()” function is used to grasp the
block. Similarly, if the click status is even, the arm
performs the ”place” operation by first lowering
the end effector to a desired height (z = 15mm),
followed by using the same ”gripper()” function’s
”release()” method. We also use an intermediate
pose, where the base and elbow joint angles are set
to π

2 radians in order to avoid collision with other
blocks in the world frame while navigating to the
”place” position after picking up the block.

• Repeat: Continue monitoring mouse click events
and performing pick-and-place operations based on
the user’s input.

H. State Machine

• Pick ’n Sort: In this contest, we employ the block
detection algorithm, as described in the earlier
sections) to search for and arrange blocks in the
workspace’s positive-Y half plane, based upon their
sizes. Till the viable workspace is empty of blocks,
we continue the block pick-and-sort procedure. In
order to identify block outlines and their areas,
we take a photo of the workspace at the onset
of each cycle and process it using our pre-defined
block detection system. Based on a predetermined
area threshold of 960-1050 sq. units, we categorize
blocks as small or large ones. To properly position
the end effector of the manipulator for grasping
operation during pick cycle, we additionally use the
orientation data, which also facilitates vertical and
horizontal grasping maneuvers. Following block
detection, we determine each block’s centroid and
harness this data to perform inverse kinematics in
order to determine requisite joint angles. The robot
picks up the block, acquires its temporary inter-
mediary position before beginning the drop/release
operation. Finally, large blocks go to the fourth
quadrant, small ones to the third quadrant. The code
incrementally updates the drop location to avoid
drop area collision/inter-lap. The event repeats until
there are zero blocks in the workspace image.

• Pick ’n Stack: In this contest, the block picking
methodology is adopted from Pick ‘n sort. We
select the workspace’s 3rd quadrant in the world
coordinates, such that placement of blocks here is
done keeping the stacks of large and small sized
blocks disparate constituently from each other. To
ensure seamless stacking, the drop release height
is incremented after each drop and the dropping
distance is decreased based on the block size.

• Line ’em Up: In this contest, we employed the color
intensity and type identification capability of our
block detector to decipher each block’s color during
the competition. Following color identification, we
arranged the blocks according to the desired color
chronology (ROYGBV) and then rapidly merge
sorted the blocks arrangement. The sorted list pro-
duced was then compared to positions that were
color-specifically pre-determined. By iterating over
this list by leveraging the pre-planned location lists,
we not only get 2 disparate size-sorted block lines
in the 3rd workspace quadrant and, near-accurate
block placement locations; but also can potentially
include the missed workplace detections majority
of the times.

• Stack ’em High: In this contest, we use an amal-
gamation of logic already developed in previous



7

contests. For instance, same as Line ’em Up contest,
we leverage the color sorting scheme and sort all the
detected blocks on the -ve half plane/3rd quadrant.
Then we pick blocks by color and place them
into 2 size-bifurcated stacks using the pick-and-
drop methods devised in Pick ’n stack task. Then
we go on updating the z coordinate of the end
effector during the drop operation based on fixed
incremental offsets, as mentioned and used in the
Pick ’n stack task.

III. RESULTS

A. Forward Kinematics

FK is implemented in ”kinematics.py”, wherein
FK dh function utilizes get transform from dh function
to return a combined transformation matrix (T) (Eq.9)
representing the pose of the end effector, by using
joint angles, DH parameters and no. of links as input.
Now in order to get the pose of the end effector we
then pass rotation part of T matrix through function
get euler angles from T to get the ZYZ euler angles,
which are then used as inputs along with the translation
part of T matrix in the function get pose from T to get
the end effector pose vector.

The accuracy of the end effector pose in the workspace
coordinates was demonstrated by comparing the outputs
of the FK function’s kinematic formulations with the
known world positional estimates. The accuracy of our
method was tested in Checkpoint 2 where we were asked
to report the (x,y,z) position of the centre of the top of
stack constituting of large blocks [6] placed at various
known positions in the world coordinate frame in the
workspace.

TABLE II
FK READINGS TAKEN AT THE CENTRE OF TOP OF STACK HAVE 6

LARGE BLOCKS

(0,175) (-300,-75) (300,-75) (300,325)
X mm -0.24 -304.45 307.21 306.64
Y mm 173.69 -79.66 -77.38 326.74
Z mm 218.58 215.08 213.38 216.54
ϕ rad -1.57 -1.52 -1.57 -1.56
θ rad 0.013 0.025 0.022 0.026
ψ rad 0 -0.689 -0.714 -0.744

In Table II we depict the proof of the tool-tip accuracy
of our arm in FK mode. Considering, the most cumula-
tive error prone case of stacking 6 blocks vertically at the
known world coordinates and finding the tool-tip pose at
the top of centre of stack of these large blocks, we can
see that our readings in x-y coordinate frame have a very
low average error rate of 2-3.5% (Table II) and the erro

rate in height(z-xis) which considering the stacking of 6
large block has a value of 35 time 6 = 210 mm. Even
along Z axis we can observe that our readings stay more
or less within the same error range, hence testifying the
robustness of our FK implementation. Considering, the
ϕ, θ and ψ orientation angles, if we approach the stack
such that the ground truth ϕ, θ and ψ are -1.57, 0.024
and -0.732 radians (from GUI)i.e.

B. Teach and Repeat

We used the Teach and Repeat methodology, as de-
scribed in Section F-1 of this report, to teach the robot
to cycle swapping blocks at locations (-100, 225) and
(100, 225) through an intermediate location at (250,75).
The results of joint angles vs. time can be seen in Fig.8.

Fig. 8. RX200 arm joint angles configuration during teach and repeat.

We cycled 10 times through the Teach and repeat
operation, then computed Fig.8 for the subsequent cycle.
During the teach operation we used multiple incremental
waypoints and had haults after pick and place operation
in the block swapping cycle, hence you can see the
extended constancy in joint angle plots.

C. Block Detection

As shown in fig. 4, our detection algorithm works
accurately on the large size blocks. But as we have used
area based block identification it is essential to test it on
the small blocks which can seen in the fig. 9. From our
evaluation we conclude that error margin in x and y axis
is about 2− 3% and in z it is about 3− 4%.



8

Fig. 9. Block Detection Algorithm on small blocks of different color

D. Contests

1) Pick ’n Sort: , our strategy was effectively able
to identify the large and small blocks in world frame
and was bale to sort it in third and Fourth quadrants.
Although the approach was sound, we couldn’t stay
within the time limit, signaling a need for more efficient
movements between waypoints. Even the gripping action
were at a different offset signalling for more robust
inverse kinematic solutions and faster movements.

2) Pick ’n Stack: , our algorithm was able to stack
mainly 2-3 blocks out of the 6 blocks needed for
assessment, but improper block detection at heights led
to faulty gripping actions leading to unstable grips and
collision as blocks kept on adding, resulting in our
inability to complete the task within the time constraints.
The unstacking solution if integrated properly could have
solved the kinematic stability issues.

3) Line ’em Up: , our strategy successfully arranged
the majority of the blocks in the correct order, with
only minor issues encountered for specific blocks. We
managed to address these issues by allowing the robot
arm to extend to the end of its workspace in order
to create a singularity solution which helped us avoid
collision during lining tasks, enhancing the reliability
of our approach. Due to time constraints and extended
travel from singularity to block lining position there can
be improvements in path planning.

4) Stack ’em High: , we faced similar stacking chal-
lenges as in Pick ’n Stack and the gripping errors as
in Pick ’n Sort. Better IK evaluation with workspace
specific configuration constraints can help us create more
precise manipulation autonomy.

IV. DISCUSSION

In our armlab implementation, we used auto cal-
ibration approach based on 4 April Tags located at
known position on the board. First we performed the
homography transform and then used pixel to point
correspondence to fetch extrinsic matrix. One caveat
with homography was scaling of the image since the

image is of the form 1280px × 720px and the board is
of the size 1000mm × 650mm. To overcome the scaling
issue we used following approach:

heightimage = heightboard

From this we can conclude that 1mm ≈ 1.1px. One
limiting factor of this approach is that size of board is
required and automating it is something which could be
looked into.

V. CONCLUSION

We presented the development of algorithms, strate-
gies and implementation of how a 5-DoF robotic ma-
nipulator is capable of recognizing and interacting with
variegated blocks using a RBG-D camera. The arithmetic
foundations of our kinematic formulations and vision
system have been thoroughly laid out with systematic
implementation in this paper. Alongside that, solutions
and improvement propositions have been made to ad-
dress the issues in devising software of such robotic
systems.

REFERENCES

[1] AprilTag. April tag. [Online]. Available: https://april.eecs.umich.
edu/software/apriltag

[2] OpenCV. Perspective-n-point pose computation. [Online]. Avail-
able: https://docs.opencv.org/4.x/d5/d1f/calib3d solvePnP.html

[3] ——. Basic concepts of homography. [Online]. Available:
https://docs.opencv.org/4.x/d9/dab/tutorial homography.html

[4] ——. Changing colorspaces. [Online]. Available: https://docs.
opencv.org/4.x/df/d9d/tutorial py colorspaces.html

[5] ——. Contour features. [Online]. Available: https://docs.opencv.
org/3.4/dd/d49/tutorial py contour features.html

[6] R. 550. Rob 550 armlab f23 docu-
ment. [Online]. Available: https://drive.google.com/file/d/1du
QoUJ6VjDKu0NOGStlNBJXNBKX qlZ/view?usp=sharing

[7] T. Robotics. Interbotix: Reactorx-200 desktop robot
arm. [Online]. Available: https://www.trossenrobotics.com/
reactorx-200-robot-arm.aspx.

[8] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling
and Control. Wiley, 2005. [Online]. Available: https://books.
google.com/books?id=wGapQAAACAAJ


